
The

zkl
Programming Language

Reference Manual

Craig Durland

Copyright © 2006,2007-13, 2014 Craig Durland
All Rights Reserved

You can distribute this document and/or modify it under the terms of the Creative
Commons Attribution-NonCommercial License, version 3.0
(http://creativecommons.org/licenses/by-nc/3.0/).

Feedback
Please direct comments and suggestions about this document to: craigd@zenkinetic.com

See Also
For more on zkl, including downloads (and an electronic copy of this book), please visit
http://zenkinetic.com/

Publication history
● March 2008
● July 2008
● January 2010, updated for zkl version 1.1
● December 2010, updated for zkl version 1.3
● June 2011, updated for zkl version 1.5.2
● December 2011, updated for zkl version 1.6
● August 2012, updated for zkl version 1.7
● June 2013, updated for zkl version 1.10
● September 2013, updated for zkl version 1.12
● June 2015, updated for zkl version 1.12.21
● January 2017, updated for zkl version 1.12.38
● December 2018, updated for zkl version 1.14.1

http://zenkinetic.com/
mailto:craigd@zenkinetic.com
http://creativecommons.org/licenses/by-nc/3.0/

Contents
The Young Person's Guide to zkl...........................1

Getting Started...2
Data Things: Numbers, Strings, etc.............3
Branching...4
Loops..4
Functions..4
Classes..5
Scope..5
The zkl Shell..5
Shared Libraries...5
Concept to Topic Mapping...........................6

Keywords...7
Names...7

Keywords...7
Reserved Words.......................................7
Syntactic Sugar..8

__<name>...9
AKA..10
ask...11
assert...12
Attributes..13
break..14
class...15

Special Functions..................................16
Inheritance...19
Anonymous Classes..............................21
Supporting Subscripts............................21
Threading...21
Side Effects..23

comments: #, //, /* */, #define, #if, #ifdef,
#text, #tokenize...25
const..30
continue...34
critical...35

Non-Locking Uses.................................35
debug...37
do..38
fcn...39

Return Value..40
Anonymous Functions...........................42
Nested Functions...................................43
Tail Recursion..45
Tail Calls..46
Functions are not Closures....................46

foreach..48
if else...50
include...52
[[]] (List Comprehension)..............................53

onExit..55
pimport (packaging)..57
print, println..60
[] (Range)...61
reg...63
return...65

Multi-valued Return..............................65
returnClass..67
self...69
switch..70
throw...72

Wishing for Goto...................................73
try/catch..74
var...79

Scope...81
Constant (Write Once) and protected
Variables..81
List assignment......................................82
Proxy Variables......................................83

while..84
Objects...85

Environment Variables..........................86
Names..86
What thread-safe and not thread-safe
mean..87
Notes on the Pump Method...................87
Notes on the apply and filter methods...91
Notes on the reduce method..................91

Atomic..93
Simple Waits: Events.............................95
Waiting for a Method.............................95
Waiting for a Function...........................96
Waiting for Multiple Objects.................96

Atomic.Bool..96
Events..98

Atomic.Int...98
Atomic.Lock...100
Atomic.WriteLock..101
Bool...105

True and False.....................................105
Class..106

Class Attributes....................................116
Parent Classes and Top Dogs...............116
Static Classes.......................................118
Late Binding..119
Delegation..119
Dynamic Class Creation......................120

The Null Class..121

Compiler...122
Compiler.Asm...122

Loader..123
Disassembler Functions.......................123

Compiler.Compiler.......................................124
Compiler.Parser...125
Compiler.Tokenizer.......................................127
Console...129
Data...130

Sequence Example: String Tables.......140
Stream Example: Code Containers......141

Deferred..143
Dictionary...148
Exception..151
Fcn..156

Thread Safety......................................160
Function Creation................................160

File..163
Utility Methods....................................166

File.DevNull...171
Float..172
GarbageMan..177

Weak References......................................177
Import..179
Int..181
Language...187
List..189

Stream methods...................................194
Utility Methods....................................194

Method..202
MinImport...204
Network.TCPClientSocket...........................205

Example: Connect to a Web Server.....207
Network.TCPServerSocket...........................210

Talking to a Terminal...........................213
Object..215
Op..221
Property...223
RegExp..224
ROList...228
Small Dictionary, PolyGraph........................229
startup..230
String...233

Formatting...242
System...245
Test..249
Test.testThemAll...249

Options..250
Test.UnitTester..252
Thread...255
Thread.DrainPipe..255

Thread.Heartbeat...255
Thread.List..256
Thread.Pipe...257
Thread.Semaphore..264
Thread.Straw...265
Thread.StrawBoss...265
Thread.Timer..267
Time..268
Time.Clock..268
Time.Date..269
Utils...273
Utils.Argh...273
Utils.BlackHole...276
Utils.Generator..277

Coroutines...278
Utils.Helpers...278
Utils.MD5...279
Utils.range...280
Utils.Wad..281
Utils.wap...284
Utils.zip...285
Utils.zipWith...285
Vault and TheVault..287
VM..290

Threads..294
Fibers...294

Void...298
Walker...299

Appendix A: zkl Grammar................................308
Concepts...308
Keywords...311
Comments..314
Data Reference Resolution.......................314
Attributes: const, private, protected, proxy
..315
Expressions..316
Scoping...318

Appendix B: Additional Objects.......................319
Utils.Compression.LZO................................320
Utils.Compression.ZeeLib............................322

Appendix C: Illustrated zkl Code Examples.....326
Hex Dump..326
Factorial...328
Processing Text Files with Scripts and Pipes
..330
Roman Numbers......................................333
Device Drivers...335
Generators..336
Sequence/List Comprehension.................339

Appendix D: A Toy Web Server........................341
Index..345

The Young Person's Guide to zkl

The Young Person's Guide to zkl

The Young Person's
 Guide to zkl

zkl doesn't attempt to boil the ocean,
zkl doesn't want to warm the ocean.
zkl wants to make a nice cup of tea.
--Zander Kale

zkl1 is a general purpose object oriented programming language. It is imperative but borrows concepts
from many programming paradigms, including functional. It is curly-bracketed, dynamic, reflective, and
threaded. It has built in garbage collection, strings, lists, dictionaries, threads, fibers (continuations and
co-routines) and more. The syntax strongly resembles the C programming language while the data
model is closer to that of Python and Smalltalk. The goal of zkl is to enable rapid prototyping, quickly
developing solutions to problems and does this at the expense of the strong static checking needed for
production oriented languages. On the other hand, zkl has a level of verbosity that slows development
somewhat, compared, for example, to Python or (especially) Perl.

In zkl, everything is an object, even numbers. Classes and functions behave like any other object,
including numbers. Classes and functions can have the same anonymity as numbers2. They usually don't
but it is nice to be able to create them on the fly, like 123, if you need to. Even threads are objects.

The “Hello world” program looks pretty much the same as it does in most languages:
 println("Hello world"); or "Hello again".println();
There is no need for include files or main(). Even the compile step is invisible.

Another example, the ever popular factorial program:
 fcn fact(x){ // Input: x output: x!
 if (0==x) return(1); // 0! → 1
 return(x * fact(x - 1)); // x! → x * (x-1)!
 }
Looks very similar to C, Java or Python. Since zkl integers are 64 bits long, it can generate big numbers:
 fact(37) → 10969079327018188803

zkl has core support for preemptive threads. Every class is threadable, as are functions:
 fcn thread{ println("I am running in ",vm); }
 thread.launch() → “I am running in VM#543”

1 Pronounced zee kay el or zee kale (for American English speakers). Or however you like.‧ ‧ ‧
2 “Lambda” functions
3 Using the BigNum extension: fact(BigNum(50)) : "%,d".fmt(_) → 30,414,093,201, 713,378,043,612,

608,166,064,768,844,377,641,568,960,512,000,000,000,000

1

The Young Person's Guide to zkl

zkl includes a fair amount of threading support, such as locks, events, semaphores, waiters, timers,
heartbeat timers and pipes (not to be confused with Unix pipes although they are used for interprocess
communication).

The zkl core objects have been designed to try and have the same "look and feel" so they can be used
interchangeably. For example, strings, lists and files have common functionality that allows them to be
used in the same way in foreach loops:
 foreach char in ("123") // String: Print 1 2 3

{ println(char); }
 foreach item in (List("1","2",3)) // Print 1 2 3

{ println(item); }
 foreach line in (File("f.txt","r")) // Print every line

{ print(line); }
If you look closely at the list example, you'll notice that lists are heterogeneous, that is, they can contain
any zkl object. In this case, two strings and a number.

The zkl exception system is very similar to that of Java, Python and other languages.
 try{
 gettingOutOfBedWasABadIdea:=consultHoroscope(today);
 if (gettingOutOfBedWasABadIdea)
 throw(Exception.BadDay("Coffee please"));
 }
 catch(BadDay){
 println("I heard somebody say: ",__exception.text);
 }
When this code is run and my horoscope for today isn't so good, the code will print:
 I heard somebody say: Coffee please

Getting Started

The zkl executable is self contained; it is all you need to get started programming in zkl. Running zkl
gives you an interactive shell:
 > zkl
 zkl: 1+2
 3
 zkl: var x=L(1, "2", 3.4, L(5,"six"), self, fcn(x){ x + 1 })
 L(1,"2",3.4,L(5,"six"),Class(__class#0),Fcn(__fcn#1))
 zkl: x.apply("type")
 L("Int","StringConst","Float","List","Class","Fcn")
 zkl: ^C
 >
To create programs, use your favorite text editor to create a .zkl file and then run it:
 zkl myprogram.zkl
 zkl myprogram

2 The Young Person's Guide to zkl

The Young Person's Guide to zkl

Data Things: Numbers, Strings, etc

Numbers
Numbers can be integer or floating point. Which one is determined by the number itself. For example, 1
is an integer and 1.2 is a floating point number. You can do all the number things: add, subtract, etc. It is
important to note that the first number in a calculation determines which type of number is the result of a
calculation. For example:
 1 + 2 → 3 // an integer
 1.5 + 2 → 3.5 // a float
 1 + 2 * 3 → 7 // an integer
 1 + 2.5 * 3 → 8 // an integer BUT since multiplication is performed before addition,
 // the calculation becomes:
 1 + (2.5 * 3) → 1 + 7.5 → 8

Strings
A string is a bunch of characters in double quotes. For example: “This is a string”. Strings are
immutable, that is, they can't change (just like numbers). To change a string, you create a new string
from the old one:
 "New " + "string" → “New String”

Lists
A list is an ordered collection of objects. You create them by giving objects to a list and it will hand you
back a new list with those objects in it. “List” is the “mother” list (and is usually referred to as “L”). So,
to create a list of two objects: L(1,"two"). Lists are mutable and can change. To add objects to the end
a list, you can use the append method or the plus operator:
 a:=L(1,"two"); a.append(3.5) → L(1,”two”,3.5)
 a + "four" → L(1,”two”,3.5,”four”)
You can do many things with lists. For example, to sort it:
 L(5,12,3.5,7).sort() → L(3.5,5,7,12)
To create a list of hex strings from a list of integers:
 L(9,10,11).apply("toString",16) → L("9","a","b")

Dictionaries
Dictionaries are like the book: a word (the key) has a definition (the value). Anything can be a key and
anything can be value.
 d:=Dictionary(); // Create a dictionary
 d["one"]=2; // The key is “one” and value is the integer 2
 d[3]="four";
 d → D(3:four one:2)

Etc
Other objects include TCP/IP sockets, regular expressions, unit tests, time and date, fibers (continuations
and co-routines), threads, a data container/byte stream editor and atomic objects. You can see a list by
typing “Vault.dir()”.

 3

The Young Person's Guide to zkl

Branching

Conditional branching is the traditional if/else:
 if (1) println("This is done always");
 if ("one"==2) println("Nope")
 else println("Yep");
An “if” actually has a value:
 x:=1;
 println(if (x==1) "one" else "not one"); → “one”

Loops

zkl provides three types of looping: while/do loops, foreach loops and “transform the collection” loops.
 while(condition){ code } // run code while condition is true
 do{ code } // run code while condition
 while(condition); // is true, at least once
 do(n){ code } // run code n times

Foreach loops walk through an object using a Walker (which would be called an iterator in languages
such as C++, Java or Python). Most objects support a walker so you can traverse them.
 foreach n in (object) // run code for each item in object
 { code }
 foreach n in (L(1,"two",3)){ println(n); } → “1”, “two”, “3”
Additionally, walkers can be used by themselves:
 L(1,"two",3).walker().walk() → L(1,”two”,3)
 w:=L(1,"two",3).walker(); w.peek() → 1

Functional languages support various ways of applying a function to a collection of data in one
statement. This is a very powerful idea, which zkl supports through these methods: apply/pump, filter
and reduce.
 L(1,2,3).apply('+(5)) → L(6,7,8) // aka map, mapcar
 L(1,2,"three",4).filter("isEven") → L(2,4)
 L(5,3,7,99,8).reduce((0).max) → 99 // aka fold
 fcn enum(x,ref){return(ref.inc(),x)}
 L("one","two").apply(enum,Ref(0)) → L(L(0,”one”), L(1,”two”))
Most container objects (such as lists, files, strings) support these methods, as do Walkers.

Functions

Code is organized in functions, indicated by the “fcn” keyword. A simple function might be:
 fcn hello{ println("Hello World"); }
hello() runs the function. There is no requirement for functions to be named, so the previous example
could be written as a lambda function:
 fcn{ println("Hello World") }(); // run the lambda function
This notation is handy when you want to pass functions to other functions:
 f(fcn{ println("Hello World") });
is the same as f(hello) (the function hello). Functions can return more than one thing,
 fcn f{ return(1,2,3) }
is a function that returns a list of three integers. Then, a,b,c:=f() would set a to 1, b to 2 and c to 3.

4 The Young Person's Guide to zkl

The Young Person's Guide to zkl

Classes

Classes are containers, they hold other objects: classes, functions, and data.
 class C{
 var c; // instance variable
 println("This is part of the class constructor");
 fcn init(v){
 println("This function is run when "

 "a new instance is created");
 c=v; // set the class variable
 }
 fcn hello{ println("Hello"); }
 }
Calling the class creates a new instance (copy) of the class:
 c:=C(1) →
 This is part of the class constructor
 This function is run when a new instance is created
You can also access the class variables and functions:
 c.hello() → “Hello”
 c.c → 1
The class C is just an “reference” instance; in such classes, all variables are initialized to Void (unless
they are set in the constructor).
 C.hello() → “Hello”
 C.c → Void

Scope

zkl is block (lexically) scoped; if something is created in a block, it wants to stays there. Except
functions and classes, which are Class scoped. Closures and partial function application can be used to
give functions one way lexical scoping.

The zkl Shell

The shell provides an interactive REPL4 environment where you can get immediate feedback to your
experiments. Often, while writing programs, it is convenient to test a few things in the shell and then
paste them into your program. Classes, functions and variables stick around so you can reference them
later.
The shell is documented in Objects.startup.

Shared Libraries

Shared libraries (DLLs) enable objects written in C to be added to the system. Example objects include a
zlib (gzip) interface, allowing both streaming and static compression and inflation and a LZO
compression object.
 Zeelib:=Import("ZeeLib");
 text:=Zeelib.Compressor(True).write("This is a test").close();
 (f:=File("foo.txt.z","wb")).write(text.drain()); f.close();
That creates the file “foo.text.z” with the compressed text in it. To check:
 >gzip -dc foo.txt.z
 This is a test

4 Read-eval-print loop: http://en.wikipedia.org/wiki/REPL

 5

http://en.wikipedia.org/wiki/REPL
http://en.wikipedia.org/wiki/REPL

The Young Person's Guide to zkl

Concept to Topic Mapping

Closure, Partial application:
● Function: 'wrap, Partial (Objects.Deferred)
● Objects: .fp (Object).

Command line processing:
● Objects: Utils.Argh

Lambda:
● Keywords: Fcn (anonymous functions)
● Objects: Deferred ('wrap)

Lazy and infinite lists:
● Objects: Walker

Lazy objects:
● Objects: Deferred

Looping, functional:
● Methods: apply, filter, pump, reduce, Utils.zipWith, Utils.Helpers.cycle
● Objects: Fcn (tail recursion),Walker

Looping, imperative
● Keywords: do, foreach, while, continue, break
● Objects: Utils.Generator, VM (yield), Walker

Networking:
● Objects: Network.TCP

Packaging:
● Keywords: pimport
● Objects: Import, Utils.Wad

Parameters (arg lists), manipulating:
● Objects: List (xplode), VM (arglist, nthArg, numArgs, pasteArgs)

Repl (read-evel-print-loop), the command line:
● Objects: startup

Sugar:
● Keywords: ask, print.
● Objects: Deferred ('wrap), Op ('+,'-,'*,'/)

Threads, cooperative (green):
● Objects: Fcn (strand, stranded)

Threads, native:
● Keywords: class (threading)
● Objects: Class (launch, liftoff, splashdown), Fcn (launch, future), Thread.Pipe, Thread.Straw

Unit testing:
● Objects: Test

Use zkl to focus on solutions! Order before midnight and receive a FREE microscope!
-- Zander Kale

6 The Young Person's Guide to zkl

Keywords

Keywords

The zkl Keywords

Expressions, editorials, expugnations, exclamations, enfadulations
It's all talk
-- King Crimison

Names

Object names can consist of the characters a-z, A-Z, 0-9 and _ (underscore). A name can’t start with a
number.
Notes:

● Names are limited to 80 characters (out of convenience for the VM).
● Case matters. “Foo” and “foo” are different names.
● A dot (“.”) is used to connect names together (foo.bar) to create a “data reference”, a compound

name that refers to nested object. There is no restriction on the total length of a data reference.
● It is a bad idea to use “_” as a name, some things use that as a placeholder.

Internal Names
The compiler will generally use two leading underscores and a “#” for internal names (“__fcn#1”,
“__jWalker”); the underscores signify a “system” name and the # is used to avoid any possible conflict
with user names (since user source code isn’t able to create names with # in them). This also means you
can’t access them by name either; but then, it is unlikely you will need to.

Keywords

The keywords are:

AKA const else onExit self while
Attributes continue fcn onExitBlock switch
break critical foreach reg throw
catch _debug_ if return try
class do include returnClass var

Reserved Words

Reserved words are words that the compiles deems too important to be replaced by user defined objects.
The compiler doesn't restrict these words everywhere, just where it thinks there could be problems.
Refer to the section in parenthesis for more information.

7

Keywords

and liftoff (Class) topdog (Class)
BaseClass (Object) not True (Bool)
__constructor (Class) or Void (Void)
False (Bool) resolve (Object)
init (Class) splashdown (Class)
launch (Class,Fcn) TheVault (TheVault)
(Bool) = Objects.Bool, (Class) = Objects.Class, (Fcn) = Objects.Fcn, (Object) = Objects.Object,
(TheVault) = Objects.TheVault, (Void) = Objects.Void

Syntactic Sugar

The compiler make a few helpful substitutions for commonly used objects.
ask → Console.ask
D → Dictionary
L → List
print → Console.print
println → Console.println
T → ROList
vm → VM
These changes are only made if the compiler can't resolve a token. In other words, if you have a function
named “print”, the compiler will use that, rather than Console.print.

Sugared parameters
Parameters to function and method calls also have some sugar for operators and functions.
'op → Op(op). Eg sort('<) → sort(Op("<")

See Objects.Op
'wrap → Closure. Eg r:=5; L(1,2,3).apply('wrap(n){ n+r }) → L(6,7,8), 'wrap

is sugar for a partial function wrapping r.
See Objects.Deferred

8 Keywords

Keywords

__<name>

Syntax: __DATE__, __DEBUG__, __FILE__, __LINE__, __NAME__, __TIME__
See Also: Keywords._debug_, Objects.Compiler, Keywords.AKA

Abstract
These compiler provided constants give you information about what is being compiled.
These constants are only available at compile time.

Discussion
● __DATE__ is when the source code was compiled. The format is “yyyy-mm-dd”.
● __DEBUG__ is the value of the debug level sent to the compiler.
● __FILE__ is the name of the source text. It might be the full file name (if a file is being

compiled) or something made up (eg “<text>” if text is being compiled).
● __LINE__ is the current line being compiled. The first line is 1.

println("foo"); // "foo"
println("This is line ",__LINE__); // "2"

● __NAME__ is the name of the current top level class (compilation unit). It might be “RootClass#”
or something else (the compiler makes this up). It can be changed by AKA.

● __TIME__ is the time when this source was compiled. The format is “hh:mm:ss” in 24 hour local
time.

Examples
 println("The file being compiled is ",__FILE__);
 debug { println("This is at source line ",__LINE__); }

 9

Keywords

AKA

Syntax: AKA(className)
See Also: Keywords.class

Abstract
Attaches className to top level class instead of the file name.
Also sets the vaultPath property and the __VAULT_PATH compiler const.

Restrictions
● AKA is only valid in the top level scope (root class).

Discussion
When a class is compiled, the default class name is derived from the name of the file that is being
compiled or is something like “RootClass#”. This is fine for scripts and one offs but might not be a good
Vault name. AKA allows you to attach a name of your choosing to the top level class.

Example file contents
● AKA(Foo);
● {AKA(Foo)} → error
● class C {

 AKA(C); → error, AKA only valid at the top level
}

● AKA(Foo);
fcn f {}
TheVault.BaseClass.add(self); → adds Class Foo to the Vault

● AKA(Compiler.Parser); sets the class name to “Parser” and sets the vault path to “Compiler”.

10 AKA

Keywords

ask

Syntax: ask(parameters)
See Also: Objects.Console

Abstract
Ask isn’t really a keyword, it is syntactic sugar for Console.ask.

Discussion
Ask is used so much that the compiler saves on keyboard wear and tear by redirecting it to the Console
object. Since it isn’t a keyword, it can be “reused” by things like functions, variables or classes.

 11

Keywords

assert

Syntax
● _assert_(boolExpression,message="")

Abstract
Assert something is True or throw AssertionError.
The error text will look something like this:
 “assert(foo.zkl:2): message”

Discussion
A helpful tool to do some error checking.
For example:
assert(1==3) → AssertionError : assert(../Tmp/foo.zkl:2)

assert((z:=f())==5,"I wanted 5, got "+z); →
 AssertionError : assert(../Tmp/foo.zkl:4): I wanted 5, got hoho

12 _assert_

Keywords

Attributes

Syntax: Attributes(attribute [,attribute ...])
Attributes: static, script and noChildren
See Also: Objects.Class

Abstract
Attaches attributes to a class.
You can also set these with class [attr] C {}.

Discussion
Attributes subtlety affect class behavior. For a discussion, see Class Attributes in the Class chapter.

The attributes are:
● static: There will be only one copy of this class. If you inherit from a static class, you will share

the parent class with every other instance of the class. This attribute is typically used at the file
level to keep a large class from being unnecessarily replicated. This attribute can only be set in a
class.
Attribute(static);
fcn f { Attribute(static); } // error
{ Attribute(static); } // error, in a block
class C1 { // not static
 class C2 { Attribute(static); } // static
}
There will only be one copy of the instance variables.
Static class variables are not thread safe.

● script: This attribute can only be set in the root class.
Attribute(script);
class C2 { Attribute(script); } // error
The script attribute is informational, as far as the VM is concerned. The Import class uses it to
determine how to run a class when it is loaded.

● noChildren: This attribute tells the VM that this class can not be used as a parent class. It is
often paired with static classes.
class [noChildren] C { }
class D(C) {} // error

The attributes do NOT propagate to contained or child classes.

 13

Keywords

break

Syntax
● while(…){ … break; }
● do{ … break; }while (…)
● foreach … { break; }
● break([1-9])

See Also: Keywords.continue

Abstract
Leave the closest enclosing loop block. With a parameter, break out of the nth loop (break(1) is the
same as break).

Discussion
The break keyword allows for early termination of a loop. The result is as if the loop had terminated
normally. Note that you can only exit the nearest enclosing loop block.

Example
Print “12”:
 n:=0; while (1){ print(n+=1); if (n==2) break; }
Again:
 foreach n in ("1234567890"){ print(n); if (n=="2") break; }

14 break

Keywords

class

Syntax: Creation
● class [name] { [classes] [functions] [constructorCode] }
● class(parentClass [,...]){ block }
● class [[attributes]][name][(parent(s))]{ block }

Syntax: Reference
● className

Syntax: Instance Creation
● className()
● className(parametersPassedToInit)

Returns
● Reference: The Class
● Creation: The new class instance, after allocation, running the constructor and the init function

(if it exists).
Notes

● “.” (dot) is used to refer to objects contained in a class.
● Classes support multiple inheritance.
● Some OO languages refer to parent classes as “super” (above) classes.
● Parent classes need to have been already defined (in this file) or be in the Vault.
● Any class (or, preferably, class instance) can become a thread.
● Class names can be up to 80 characters long and can use the characters “a-zA-Z0-9_”, in other

words: underscore, digits, upper or lower case letters. A name can not start with a digit.
● Names are case sensitive.
● The possible attributes are noChildren, private and static. These are the same as that can be set

with the Attributes keyword.
See Also

● Objects.Class
● Objects.Fcn, Keywords.fcn
● Keywords.returnClass, Keywords.AKA, Keywords.Attributes
● Objects.Object
● Objects.Compiler.compileFile, Objects.Compiler.compileText

Abstract
Define a new class object. A simple example:
 class C{ var v=14; fcn f{ println("f",v); } }
 C.f(); // prints "f14"
 c:=C(); // create a new instance of C
 c.f(); // prints "f14"
A class can contain any of: classes, functions and/or class variables.

All class objects inherit from Objects.Class.

Discussion
The class keyword is used to define a Class. A Class is basically a “active” container that can hold data
(variables), functions and classes. It is active because it can create new instances of itself and run
contained code.

 15

Keywords

Instance
All classes are class “instances”. The word instance is used to refer to a copy of an existing class.
“Class” refers to the original “ancestral” instance/definition.

The [Virtual] Class Object
When you use the class keyword to create a new class, you implicitly inherit from Objects.Class, which
is a virtual object that inherits from Object and contains all the methods, properties and operators listed
in the Objects.Object and Objects.Class sections. That statement is pretty obtuse; here is some pseudo
code to explain it from another angle:
 class Class(Object){
 <methods, properties and operators>
 }
 class myClass(parents,Class){ … }
Notes:

● Class is the last class in the inheritance list so it matched last, use BaseClass (Object method) if
you need to access it.

● Class and Object are not special names, and are used to name concepts. Use them if you like.

Class Variables (Instance Data)
When var is used to declare a class variable, that variable is created “class local”, that is, each instance
of the class contains one of those variables, separate from all other instances. When a new instance is
created, the variables of the creating class are copied to the new class.

One common error is an implicitly declared register overwriting a class var. Consider:
 class{
 var x;
 fcn f{ x=3; } // sets class var
 }
The class variable “x” is overwritten in the function f. If f had actually meant to use x as a local variable,
the programmer is going to be surprised. Thus, it is a good idea to explicitly declare variables (with var
or reg) and use longer names for class variables.

Functions
Functions contained in a class are “bound” to a specific instance of that class. Because of this, a function
can always refer to objects in its containing class, no matter how that function is referenced, spindled or
mutilated.

Attributes
A class can have several attributes. Since the root class (aka file) is declared implicitly, the root class
attributes are set with the Attributes keyword. See Keywords.Attributes for a description. The “private”
attribute means that resolve will not be able to find this class but it is visible throughout the file it is
defined in.

Special Functions

A function marked Reserved means you can't create this function, the compiler creates it for you.
Functions marked Restricted mean that the name can only be created as a class function, not as a class or
variable.

● __constructor: Reserved. The Class Constructor (you create this implicitly).

16 class

Keywords

As a class is compiled, the compiler collects all the source code that isn’t in a function and puts
into a function named “__constructor”, in the order that the code appears. (You can’t create this
function by name but you can call it with __constructor()). That code is then compiled and added
to the class. When a new instance of a class is created (new copy allocated), the constructor is
called to “construct” the new class. This is done just before init is called. The constructor is
usually called without any parameters5 and almost always returns the new instance (almost
because, sometimes, you don’t want the class to act like a class; see Keywords.returnClass).

The constructor is always the first function in a class, even if it is nullFcn. The only times you
should need to call the constructor is when the compiler hands you a class (because the compiler
doesn’t construct classes, it only creates them) or when you tell the loader not call the
constructor.
These code snippets both run the constructor (the first is preferred):
 klass.__constructor()
 klass.fcns[0]()

● init([parameters]): Restricted. The init function is optional. If it exists, it is called during
instance creation, just after the constructor has been called. Init almost always returns the new
instance (almost because, sometimes, you don’t want the class to act like a class; see
returnClass). In ClassC(1,2,3), the parameters passed to init are 1,2,3.
In the constructor and init, the compiler always appends return(self) to the code so you don’t
have to remember to return the new instance (otherwise
 newClass=ClassC(1);
might return some random object instead of the new ClassC). For this reason, the compiler wants
the code to run straight through and actively discourages you from leaving (eg “return” is
illegal). The returnClass keyword is the escape hatch.

● launch([parameters]): Restricted. Run this class in a thread. See Threading (below).
● liftoff([parameters]): Restricted. Called when this class is launched as a thread. The

parameters are the same as those to launch. See Threading (below).
● runMe([parameters]): runMe hijacks the create method. See Objects.Class.Run Me Classes.
● splashdown(happyDeath,exception): Restricted. Optional. Called when a thread is done

running. See Threading (below).
● toString(): Optional. If you want to do something different for the name of your class. Be

careful however. See Objects.Class.toString.
● __sGet(i [,n]): Optional. Implements self[i [,n]]. See subscripts (below).
● __sSet(x,i [,n]): Optional. Implements self[i [,n]]=x. See subscripts (below).

Definition
At runtime, an instance of each defined class is created, the “reference” (or Eve) instance. This
reference instance can then be used to create additional instances of itself (which, in turn, can create
copies of the reference instance). The reference is a class instance like any other instance.

Creating a New Instance
● Copy method:

● A copy is created.

5 Since the constructor is a function like any other, it can be called with parameters. But, by default, the constructor is
called with no parameters.

 17

Keywords

● Copies of fcns, contained classes, parents, …
● Class variables are copied/duplicated.

● Instance creation: className([parameters for the init function])
Any new class instance created this way is the same as if it was created from the reference
instance (although the instance data may be different).

● A new copy of the class is created, using class.copy().
● Default args for the init function are resolved.
● The constructor is run.
● The init function is called (if it exists) with parameters (if any).

Note: since default parameters are resolved prior to the constructor being called, an init
function like
class C{
 var x="x";
 fcn init(y=self.x){ println(y) }
}
will always have y set to Void. This is unexpected and not at all obvious. But that is the
way it is. If you call the init function directly, the code works as expected (that is, y is
“x”).

● The new instance is returned.
● If class has the “static” attribute set, the class is returned unchanged after running init (the

constructor isn't run), no new instances are made.
● Construction order (for contained classes):

Contained classes are constructed where they are defined.
class A{ // constructe4 first
 var av=12; // initialized here
 class B{ // constructed second
 class C{} // third
 if(r){ class M{} } // maybe constructed

 class D{ // forth but after dfv initialized
 fcn init{} // fifth (for A())
 fcn f{ var dfv=5; } // dfv initialized before D
 }
 class E{} // sixth
}

A defined→ A, av, B, C, dfv, D, E (where A is A.__constructor(), etc)
A() → A, av, B, C, dfv, D, D.init, E
A.D() → dfv, D, D.init. New D, same A.

● To recap:
class C{
 var x="x";
 fcn init(y=5){ x=y }
}
C’s constructor has been called and x is "x".
c=C.copy(); // c.x="x", init not called
c=C(); // c.x=5, a copy of C has been made and
 // c’s constructor and init called
c=C(1); // c.x=1, copy made, constructor & init called
c=C.init(); // c is C, C.x=5, new instance not created,
 // but constructor and init ARE called

18 class

Keywords

Files
A file (or other compilation unit) that is compiled is wrapped into a class. The name of the class is
derived from the file name and can be changed via the AKA keyword. In some cases, a file/class is just a
container for the classes of interest (the Exception class is an example). In these cases, it often makes
more sense, when creating a new instance, to create a class other than the base class. There are several
ways to do this:

● Use one class per file, don’t use the class keyword and let the compiler wrap the class. For
example, if a file contains:
 AKA(Foo);
 fcn init{ … }
 fcn f{ … }
it is the same as if the code was wrapped by
 class Foo{ fileContents }

● Use returnClass in the init function (or in the constructor if there is no init). ReturnClass
allows you to override the normal behavior of the init function (to return the new instance of the
class) and return something else. In a file that contains a collection of utility functions and
classes, you might return an instance of a “primary” class, or, based on the input to init, select
different classes. For example:
AKA(Goodies);
fcn init(x){
 if (x==1) returnClass(G1());
 returnClass(G2());
}
class G1{ … } // Goodie class 1
class G2{ … } // Goodie class 2
Then, Goodies(1) will return an instance of G1 rather than Goodies.

● Don’t have an init function and use returnClass in the constructor. This works well if there are no
parameters involved.

Inheritance

Inheritance is ability to inherit functionality from a “parent” class. For example:
 class One{ var v=1; fcn two{ println(two); }}
 class Two(One){ fcn two{ println("v = ",v); }}
Class Two inherits the class variable v from class One. Even though class One has a function named
“two”, class Two creates its own function two, which hides the one in One. It is important to note that
classes act like containers and hold copies of the parent classes, so One.two still exists. Note that the
inherited One is a different instance from the original6.
 Two.two(); // prints "v = 1"
 Two.v=2; Two.two(); // prints "v = 2"
 Two.One.v=3; Two.two(); // prints "v = 3"
 Two.One.two() // prints "Fcn(two)"
 println(One.v); // prints "1"
 One.two(); // prints "Fcn(two)"

Multiple inheritance, the ability to inherit from more than one parent class, is supported. A left-first,
breadth-first search is used to search for “ambiguous” objects (i.e. references that are not absolute).

6 Unless One is static, in which case, all children share the same instance of One.

 19

Keywords

Not surprisingly, things can get pretty messy if the class hierarchy is deep, wide or twisted. “Designing
for inheritance” is helpful here, of which the abridged version is: “Don’t depend on stuff very far above
you”.
 class Three(One,Two){}
 class Four(Two,One) {}

 Three.One.v=1; Three.Two.v=2;
 println(Three.v); // prints "1", Three.One is searched first

 Four.One.v=1; Four.Two.v=2;
 println(Four.v); // prints "1"!
This last result might be surprising. While Two is searched first, v isn't found in that class so the search
moves to Twos sibling class, which contains the v we set to 1. But Four.Two.v is actually
Four.Two.One.v. This also illustrates that duplicate classes are not merged; Three and Four both contain
two copies of One, one explicit and one implicit (in Two). A picture might help:

 One One One One
 | | | |
 Two → One Two Two → Two One
 | |
 Three Three Four Four

From this, you can deduce that there are two copies of variable “f” in Three: Three.One.f,
Three.Two.One.f and similarly for Four.
You can use the Class.linearizeParents property to show the class search order:
 Three.linearizeParents → L(Class(Three),Class(One),Class(Two))
 Four.linearizeParents → L(Class(Four),Class(Two),Class(One))

The “diamond” class structure (see Diamond Problem in the Wikipedia)
 class A{}
 class B(A){} class C(A){}
 class D(B,C){}
is implemented as shown in this illustration →

 A A A

 B C → B C

 D D
(class A is duplicated7). The search order is D,B,C,A (the upper right A is ignored), or more accurately,
D, D.B, D.C, D.B.A.

Who's your daddy?
A class can inherit from any class (other than itself) as long as the parent class exists (for example,
residing in the Vault) or has already been defined in the source code8. But the compiler is a bit myopic
when it comes to finding a parent. Thus the following, seemingly perfectly reasonable, things don't
work9:
 Null=self.NullClass; class NotSoSpecial(Null){}
 class NotSoSpecial(self.NullClass){}

7 Assuming that A,B or C aren't static classes.
8 The reason is that a class has to exist at compile time in order to inherit from it. Another reason for this restriction -

serialized classes. When a class is serialized, parents are not stored with the class, only references. If a parent is dynamic,
that reference will be gone when the class is un-serialized.

9 In the case of a variable, the contents are not known at compile time, so the mystery value can't be used as parent.
Likewise, “self” doesn't exist until runtime.

20 class

http://en.wikipedia.org/wiki/Diamond_problem

Keywords

If you require this functionality10, you'll have to create the class manually11 (see Objects.Class).

You can explicitly reference data in a parent class by using that parents name.
 class A{ var a; class A2{ var a2; }}
 class B(A){ A.a=5; A.A2.a2=6; }
If the parent name is a compound name, use the singular name.
 class B(A.A2){ A2.a2=6; }
If you used A.A2.a2, you would be referring to the original Class A, not your parent class, and the
wrong a2 would be set.

Anonymous Classes

There is no requirement for a class to be named, it is just a convenience. Nice but not necessary. While
this feature is commonly used with functions, it doesn’t seem as useful for classes but is used in the
same way. Here are two common cases:

● Passing a “temporary” class as parameter:
 L(1,2,3).apply(class{ var v; fcn init(x){ v=x; } });
This will create a list of three classes, the first has v set to 1, and the last has v set to 3.

● Using a variable instead of a class name:
C:=class{ var v=4; fcn f{ println("f" + f); }}

● Anonymous classes are always private.

Supporting Subscripts

If your class implements subscripts, you’ll need to write __sGet and possibly __sSet functions. See
Objects.Class.

Threading

Any class can become a thread; all you need is a liftoff function.
Trivial example:
class T{
 fcn liftoff{ println("Running in a thread"); }
 fcn splashdown{ // optional
 println(self,"has finished running as a thread");
 }
}
T().launch() starts an instance of T in a thread and prints:
 Running in a thread
 Class(T) has finished running as a thread

If you pass parameters to launch, those parameters are passed to liftoff when the thread starts.
Splashdown is a optional function, that, if it exists, is called when the thread terminates. Splashdown is
passed two parameters, a Bool that is True if the thread ran “normally” and False if something “AB”
normal happened. The second parameter is the exception that caused the problem. Or Void if it was a
happy death. Splashdown is called in its own thread.

10 eg prototype based Class.clone
11 And don't expect to enjoy it.

 21

Keywords

It is worth noting that there is no way to know when the thread starts running. Normally, this is not a
problem, but if you need to know, use a Thread.Pipe (to send a message) or set a Atomic.Bool in liftoff
and wait for it in the launching function. Just waiting a short amount of time will work until your system
is heavily loaded or you move the code to a different system.
class Thread{
 var started=Atomic.Bool();
 fcn init{ launch(); }
 fcn liftoff{
 println("Started");
 started.set();
 Atomic.sleep(5);
 println("Done");
 }
}
t:=Thread();
t.started.wait(); println("Thread is running");
 → Started
 Thread is running
 Done

Are You Done Yet?
A somewhat similar problem exists if the main thread exits while other threads are still running – those
threads are killed. In the example above, if you are running the code as a script, you won't see “Done”;
the main thread will have finished and exited before the thread finished sleeping and printed “Done”.
You can avoid this by watching the global thread count:
 Atomic.waitFor(fcn{ vm.numThreads==0 });

If you are coding a subsystem that uses threads and you want to stay in the subsystem until all your
threads have finished (which may be before other, unknown to you, threads have finished), you can use
a local thread count:
var N=Atomic.Int();
class Thread{
 fcn init{ launch(); }
 fcn liftoff{
 println("Started ",vm);
 Atomic.sleep(5);
 }
 fcn splashdown{ println("Done"); N.dec(); }
}
N.inc(); Thread(); N.inc(); Thread();
N.waitFor(0);
 → Started VM#1508
 Started VM#1509
 Done
 Done
Note that we don't need to wait for the threads to start. Also, to ensure N is decremented, we do that in
splashdown, which is guaranteed to run.

22 class

Keywords

Inheritance and Threads
For the most part, threaded classes “just work”. There is one thing to be aware of and that is the search
order for the splashdown function. The class that calls launch is the class where searching starts when
looking for liftoff and splashdown.
Consider:
 class P{
 fcn go{ launch() }
 fcn liftoff{}
 fcn splashdown{ println(self) } // "Class(P)"
 }
 class C(P){ fcn splashdown{ println(self) }} // "Class(C)"
 C.go(); → "Class(P)"
 C.launch(); → "Class(C)"
You can change this behavior with Class.topdog12.

Side Effects

A side effect is a calculation that cascades beyond the scope it is running in. A typical example is IO:
println(“Hello World”) is a function call that causes a device somewhere to display characters. Where
ever that device is, it is way outside of the scope println is in. Why do you care? You don't, until you try
to mix threads and global resources. In this case, two threads writing to the console at the same time will
have their characters intermixed, which is annoying but not fatal.

Re-Entrant Functions
In order to be thread safe (something that multiple threads can access at the same time), a function must
be re-entrant; that is, it can not contain globally changeable data and it can not access (or return)
globally changeable data. The Atomic object provides ways to control access to global data, which
mitigates the second point, but, as it is still possible for threads to dead lock, the function would still not
be re-entrant13. Another place where you have to be very careful about is variables14, both class and
function. Class variables are pretty obviously global data for all functions in the class; every function is
bound to the class instance it is defined in, thus accessing a class variable is not re-entrant15. Function
variables are, surprisingly16, also class variables, as they [effectively] live in the class instance17. Thus,
two threads calling the same function, which accesses a function local variable, are accessing the same
variable.

Functions have restricted access to data outside of their scope (as discussed above), which can make life
difficult for anonymous functions. Consider:
 fcn f(list,x){ list.filter(fcn(i){ i!=x })}
You would expect f(L(1,2,3),2) to return L(1,3). Maybe it would if it would compile, but it doesn't
because anonymous functions are also autonomous18, which basically means they run in their own little

12 In this case, by changing the function go to fcn go{ topdog.launch() }
13 But, you gotta do what you gotta do. Life isn't always simple.
14 As opposed to registers, which are always thread safe.
15 Note that each class instance has a separate copy of the class variables. So there is no conflict if two threads are calling

the same function in DIFFERENT class instances. But the function is still not re-entrant.
16 Especially for C programmers. Think of them as “static int”.
17 That's just the way it is; they are syntactic surgar.
18 They have to be if they are to live outside of the scope they are defined in; which, of course, they have to be, since they

can be stored by whatever they are passed to (they are first class objects). Methods are the same in this regard.

 23

Keywords

sandbox, separate from the scope they were defined in. In this case, that means the filter function can't
access f's parameter x. OK, what about this fix:
 fcn f(list,x){ var y=x; list.filter(fcn(i){ i!=y })}
Well, it works. But what isn't obvious is the code is equivalent to:
 var y; fcn f(list,x){ y=x; list.filter(fcn(i){ i!=y })}
Which means f is not re-entrant19. What do to (besides curse)? Now you know why many of the [list]
methods that take functions (and methods) also take static parameters:
 fcn f(list,x){ list.filter(fcn(i,x){ i!=x },x) }
Now, the filter call is side effect free and f is re-entrant20.

In general, try to write your code to be re-entrant. If the unexpected happens and your function IS used
in a threaded application, re-entrancy errors tend to be randomish and very hard to find. By the same
token, library functions should ALWAYS be re-entrant.

19 It can be argued, quite reasonably, that function variables were a bad idea.
20 Closures are the preferred way to solve this but closures are not [directly] supported. Partial evaluation (.fp) works but

static parameters are cheap and easy.

24 class

Keywords

comments: #, //, /* */, #define, #if, #ifdef, #text, #tokenize

There are two types of comments; to end of line and block.
● // All text after the “//” is ignored (to end of line)
● # All text after the “#” is ignored (to end of line)
● #define name 0|1
● #if 0|1|name [#else] #endif
● #ifdef name [#else] #endif
● #fcn name { body }
● #text name text
● #tokenize name
● / * */ All text inside between the starting /* and ending */ is ignored. These can be nested: /*

comment /* more comment */ */
See Also: Comments section in the grammar appendix.

// and # comments are stripped out as source code is tokenized; as soon as they are seen21, they, and the
rest of the line are thrown away, never to be seen again.

If you use # for a comment, you should use “# ” (sharp blank) so the space will keep the comment from
being interpreted as a command. For example, #define the following to 4 isn't going to do what
you expect. Use # define the following to 4.

The #cmds can only be used when they are preceded by nothing more than space.

Problems
Block comments are stripped out after the source code has been tokenized22. This can cause problems for
you, the coder. Consider:
 /* Bad: Comment with a quote (") in it */
 /* Bad: Comment with a unquote (0') in it */
The tokenizer sees the quote and thinks you are starting a string (it thinks the /* is just another token, not
the start of a comment). When it doesn't see a closing quote, it complains about a non-terminated string.
The next lines will also cause problems:
 /* Bad: Comment with a # in it */
 /* Bad: Comment with a // in it */
because the “#” and “//” are recognized by the tokenizer, which clears the rest of the line and causes the
terminating */ to disappear.
#if and /* comments can't overlap. Put the entire comment in the #if block or vice versa.
Usually, the error is pretty clear but it can lead to some really strange errors23.
Here are some comments that are correct but don't look that way:
 /* Comment with a "#" in it */
 /* Comment with a \# in it */
 /* Comment with a \" in it */
 /* Comment with a " in it */ " */

21 Unless they are quoted or are in a string constant (“//”)
22 There are good reasons for this, from a compiler writers view point anyway
23 This is one reason why strings can't span lines; a non-terminated string might not be detected until the end of the file, a

long, long way from the actual error. Unfortunately, that is what you get with a non-terminated comment.

 25

Keywords

Nested Comments
Block comments can be nested. This is really nice when you want to “turn off” a chunk of code but not
remove it from your program. For example:
/* foo isn't being used but the code is cool,
 keep it around for reference.
 /* The foo function does
 * strange and wonderful things
 */
 fcn foo { strangeAndWonderful(); }
*/

Shell Scripts
The “#” comments provide the standard Unix shell escape for running scripts:
 #!/usr/bin/zkl
In addition to that, compiled (.zsc) classes can also be treated as scripts by shells. The “--#!” compiler
option will add a “#!” line of text to the compiled file (“--#! .” will grab that line from the program text).
A shell that is asked to run a .zsc file will look at the first line and see the “#!” comment and invoke zkl
on the .zsc file. This also works with Apache CGI scripts.

#define name 0|1
Create a symbolic name to be used with #if or #ifdef.
If you need to create the value dynamically, use #fcn and #tokenize. For example, if you want to
create #define OnWindows 1 only when compiling on a Windows machine, you can use:
 #fcn MSWIN {"#define OnWindows "+System.isWindows.toInt()}
 #tokenize MSWIN
 #if OnWindows
 println("Compiled on a Windows box");
 #endif
or
 #fcn MSWIN {System.isWindows and "#define OnWindows 1" or ""}
 #tokenize MSWIN
 #ifdef OnWindows
 …

#fcn name { body }
Create a function that can be run by #tokenize. The function can take parameters. Body has access to
all the objects [previously] created by #define, #fcn and #text (but parameters do not).
If you want debug the fcn, use print; it will be called during #tokenize.

#if 0|1|name
#if blocks are basically the same as the equivalent C preprocessor commands. The “#” has to be the first
non space character on a line or it is treated as a comment. The only argument is one integer; 0 means
don't compile, 1 means compile.
The rest of the line needs to have valid syntax, even though it is currently ignored (future proofing).

26 comments: #, //, /* */, #define, #if, #ifdef, #text, #tokenize

Keywords

Blocks can be nested.
 #if 1 // compile this code
 println("Compiled");
 #if 0
 println("Not compiled");
 #endif
 /* more compiled code */
 #else
 println("Not compiled");
 #endif // done with #if
Name is something has been created with #define, #fcn or #text and is evaluated with toBool. If name
hasn't been defined, an error is thrown. A fcn is always 1, it is not called.

#ifdef name
Name is replaced by 1 if it has been created by #define, #fcn or #text and the #ifdef is transformed
into #if.

#text name text
Create a symbolic name for the rest of the text on the line so it can be tokenized with #tokenize.
Leading and trailing white space is removed.

#tokenize name, #tokensize f, #tokenize f(a)
Tokenize some text. If name is a function, run the function and tokenize the result as if it were part of the
source code. This is recursive, awkward and error prone.

To remove a previously created item, use #text name or #define name 0.

The #cmds allow you to insert text into the source code before it is parsed. Constants (Keywords.const)
are post parse. Keywords._debug_ processing is during parse.

#<<<
x:=
#<<<
"#<<< starts a block of lines that are concatenated verbatim
and fed into the parser as one line. #<<< ends the block.
Both #<<< tokens must start the line that is otherwise ignored

Note that is isn't a string, but arbitrary source " + 1 + 23;
#<<<
x.println();

Prints:
#<<< starts a block of lines that are concatenated verbatim
and fed into the parser as one line. #<<< ends the block.
Both #<<< tokens must start the line that is otherwise ignored

Note that is isn't a string, but arbitrary source 123

#<<<#

 27

Keywords

This marks the start and end of a block of text to be completely ignored. You can use this as a super #if
0 or use it to “hide” information for other programs. For example, you can embed shell scripts in a zkl
file:
File foo.zkl:
#!/bin/sh
#<<<#
echo "A shell script in a zkl program ($0)"
echo "Now run zkl <this file> with Hello World as args"
zkl $0 Hello World!
exit
#<<<#
println("The shell script says ",vm.arglist.concat(" "));

Now make it executable: chmod a+x foo.zkl and run it:
$./foo.zkl
A shell script in a zkl program (./foo.zkl)
Now run zkl <this file> with Hello World as args
The shell script says Hello World!
$

Notes:
● #<<< and #<<<# must start the line.
● #<<< and #<<<# do not nest.
● #<<<# can enclose #<<< but not vice versa; #<<<# inside of a #<<< block is just text (that will

be parsed).

Assertions
According to Wikipedia; Assertions can function as a form of documentation: they can describe the state
the code expects to find before it runs (its preconditions), and the state the code expects to result in when
it is finished running (postconditions); they can also specify invariants of a class.
That can be implemented by talking directly to the tokenizer:
fcn assert(fname,lineNum,bools){
 if(False!=vm.arglist[2,*].filter1n('!))
 throw(Exception.BadDay(
 "Assertion failed: %s:%d".fmt(fname,lineNum)));
}
#fcn assert { "assert(__FILE__,__LINE__,%s);".fmt(vm.arglist.concat(",")) }
Then, your code:
fcn f(a){
 #tokenize assert("a.isType(1) and a>3","a*3<20");
}
f(4); // passes
f("hoho"); // fails
#tokenize assert(args) runs the tokenize time assert function and and tokenizes the result. The args
need to be strings because a is not a known quantity at tokenize time, the parser does that (something
like 1==1 would not need to be quoted). The above example is turned into:
fcn f(a){
 assert("bbb.zkl",23,a.isType(1) and a>3,a*3<20);
}
Running the code produces:
Output:
VM#1 caught this unhandled exception:

28 comments: #, //, /* */, #define, #if, #ifdef, #text, #tokenize

http://en.wikipedia.org/wiki/Assertion_(software_development)#Assertions_in_design_by_contract

Keywords

 BadDay : Assertion failed: bbb.zkl:23

 29

Keywords

const

Syntax
● const k=expression;
● const kf=fcn{}
● const{ block }
● const nameSpace{ const … }

Notes
● const a=b=123 is illegal.
● Only constants of types Bool, Float, Fcn, Int, String and Void can be accessed from code space.
● Constant functions can only be run from code, they are not available to be compiled.
● Parameters to constant functions can be True, False, number (eg 123, 4.56), text (eg “foo”), or

Void.
● Constants are visible to the entire class (and all contained classes) they are declared in,

independent of where in that class they are declared.
See Also: Keywords.reg, Keywords.var

Abstract
Create a compile time constant.

Discussion
Constants are compile time objects that allow you to perform calculations at compile, rather than run,
time. All constants are gathered at parse time, compiled, run and the resulting objects are placed in their
enclosing class before that enclosing class is actually compiled24. Your code can then access the
compiled objects.
Example:
 const k=123;
 println(k); // prints "123"
 println(k + 3); // prints "126"

As the constants are collected at parse time, then compiled, if there is more than one definition of a
constant, the last one wins.
Example:
 const k=5;
 println(k); // prints "foo"
 const k="foo";
While this may not be the most pleasant behavior, it is most likely to be a problem when including
header files (but that is one reason why it works this way).

Const Name Spaces
Just as classes can be nested, so can constants.

24 This is a “nested”, or phased, compile. The parts of the parse tree marked “constant” are compiled, and run, before the rest
of the tree is compiled. This defines a “constant space”. Objects created in constant space are then accessible to the rest of
the parse tree as it is compiled. Actions performed in constant space can likewise radiate out to the enclosing code.

30 const

Keywords

 const RGB_COLOR{
 const RED=0xf00;
 const BLUE=0x0f0, GREEN=0x00f;
 const CYAN=BLUE + GREEN; // → 0x0ff
 }
 const INDEXED_COLOR{ const RED=1, BLUE=2, GREEN=3; }
 const BLUE=1;
 BLUE → 1
 RGB_COLOR.BLUE → 0x0F0
 INDEXED_COLOR.BLUE; → 2
This could be further nested as:
 const COLOR{
 const RGB{
 const RED=0xf00,BLUE=0x0f0,GREEN=0x00f,CYAN=BLUE+GREEN;
 }
 const INDEXED{ const RED=1, BLUE=2, GREEN=3; }
 const BLUE=1;
 }
Then the example becomes:
 COLOR.BLUE; → 1
 COLOR.RGB.BLUE; → 0x0F0
 COLOR.INDEXED.BLUE; → 2

Name spaces can be used to wrap header files. For example, if file “bar.h.zkl” contains const X=123;,
a poorly named const, you can wrap it with:
 const FOO{ include(bar.h.zkl) }
then FOO.X → 123. The entire contents of bar.h.zkl becomes part of constant space, even those parts not
declared const. See the next item.

Header/Include files
If you have programmed in C, you are familiar with header (.h) files. You can do the same thing by
collecting constants into a file.

Constanst Functions: const f=fcn {}
A constant function is a run only object as far as compiled code is concerned. Note that this is actually
creating a variable in const space (see next section). If the function name is referenced without
parameters, it acts like a proxy variable and the function is run.
Examples:
 const f=fcn { return(3) }
 println(f); // reference, prints "3"
 println(f()); // → "3"

 const f2=fcn(x){ return("hoho" + x) }
 println(f2); // error, missing parameter
 println(f2(2)); // prints "hoho2"
 println(f2(f)); // error, f is invalid parameter to a const fcn

Arbitrary code in Constant Space: const { … }
Constants can do pretty much anything they like in constant space. They are a class, they have a
constructor that is run. Of course, getting carried away here is a good way to hang yourself. Use the

 31

Keywords

const { block } to shove arbitrary code into constant space. All const class variables are available in
code space; functions, methods, etc are not (if a function is bound to a variable, it is; see previous
section).
Examples:

caraeconst{
 // "Hello" printed between parse time and compile time
 println("Hello from constant space");
 class C{}
 var k=C.toSring(); // create const k
}
println(k); // prints "Class(C)" at run time

● Put an auto-incrementor in const space to create enum like constants.
const{ var _n=-1; var [proxy] N=fcn{ _n+=1 } }
To use:
const X=N; // → 0
println(_n); // → 2 code time is after const time
const Y=N,Z=N; // → 1,2

● To reset the above enumerator, use const{ _n=-1; } just before you define the next constants.
● Be aware of the difference between running a function in const space and referencing a const

space variable and what happens if mixed.
const{ var _n=-1; fcn N{ _n+=1 } }
const A=N; // → 0?
const B=N; // → 1?
println(B,”,“,A); //-→ 0,1, oops
A and B are bound to the function N at const time but are evaluated at run time (in the print
statement).

Debugging
Since constants happen at compile time, not at run time, they can be unpleasant to debug. If your
constants are complicated, create them outside of constant space and then convert them to constants. Use
print to debug existing constants. Take a look at the parse tree to see what the parser thinks you are
doing. You can do this with zkl --parse file.zkl. The constants are collected in the “__Constants#”
class that is at the top of the parse tree.
Note that __DEBUG__, __FILE__, etc have NOT been set yet but _debug_ works as expected (ie the
debug level has propagated into constant space).

Constant Movement
Constants are moved to the top of the class they are declared in25 and are compiled before references to
them are resolved. This means that a constant declared in a class is visible throughout the class,
regardless of where it was declared (if a const is declared in the root class, it is visible to the entire
class). This can lead to counter intuitive behavior; consider:
 x:=K; println(x); const K=1; → 1
 const K=1; x:=K; println(x); const K=2; → 2

25 Variables also do this, moving to the top of their class or function; registers move to the top of their block.

32 const

Keywords

Scope
The following show some class scoping:
 const K=1; class{ const K=2; println(K); } → 2
 const K=1; class{ const K=2; } println(K); → 1

Name Conflicts
If a register or variable name conflicts with a const name, the “closest” declaration wins, which is
usually the reg or var as const space is searched last.
 const k=1; var k=5; // k = 5
 const k=1; var k=k; // k = Void, k is always seen as a var

 33

Keywords

continue

Syntax
● while (…){ … continue; … }
● do { … continue; … }while (…)
● foreach x in (…){ … continue; …}
● continue([1-9])

See Also: Keywords.break

Abstract
Skip to the next iteration of the enclosing loop. With a parameter, continue the nth loop (continue(1) is
the same as continue).

Discussion
The continue keyword jumps to the control part of the nearest enclosing loop.

Example
 foreach n in ("123"){ if(n=="2") continue; print(n); }
 Prints “13”

34 continue

Keywords

critical

Syntax
● critical{ block }
● critical(lockName){ block }
● critical(lockName,acquireName,releaseName){ block }

lockName can be any object that has “acquire” and “release” methods, the object of choice being
Atomic.Lock. If not a Lock, you need to provide the names of the acquire and release methods
(critical prepends lockName to the method names).

See Also: Keywords.onExit, Atomic.Lock, Atomic.WriteLock, Keywords.class.Threading

Abstract
Mark a block of code as guarded, usually atomic (executable by only one thread at a time), however,
critical can be used for other types of locks or operations.
Useful for controlling access to a global resource, it is a specialized form of onExit.
If control passes out of block, (via return, throw, etc), the lock is released.

Discussion
A multi-threaded program may have resources that are shared amongst several threads but can only be
accessed by one thread at time. For example, if two threads write to a file at the same time, the result
would be garbage – data from one thread’s write would be intermixed with the other threads. The critical
keyword provides a way to serialize access to that resource by using a lock. When a thread tries to run
the block, it attempts to acquire the lock and, if it can, it does and runs the block. While it is running the
block, if another threads attempts to run the block, it blocks attempting to acquire the lock and waits
until the first thread has exited the block and released the lock. This also illustrates an important point –
the critical code should be as short, and fast, as possible to minimize the time other threads might be
blocked.

The two forms exist to cover the following cases:
● A resource is protected by more than one critical block and thus needs to share a lock. That lock

should be a class variable.
class C{
var [protected] lock=Atomic.Lock(), N;
 fcn a{ critical(lock){ N 1; }
 fcn b{ critical(lock){ N=2; }
}
Note that lock and N are read only (to anybody outside of C) so other threads will keep their
grubby mitts off of them.

● If there is no resource to protect, or there is only one place the resource needs to be protected:
● fcn a{ critical{ file.write("foo"); } }
● critical{ blinkLED(); }

Non-Locking Uses

Critical can also be used to to wrap a block with a prologue and epilogue. Here is a simple example:

 35

Keywords

 class C{
 fcn begin{ println("BEGIN") } fcn end{ println("END") }
 }
 var c=C();
 critical(c,begin,end){ println("My code"); }
 → BEGIN
 My code
 END
This provides two benefits: You won't forget to call “end” and you know “end” will be called no matter
what. A real world use is with GUI toolkits; a widget is created and then other widgets (such as buttons)
are added to the main widget. The code might look something like this:
 var window=GUI.Window();
 window.begin();
 GUI.Button(); GUI.TextEditor();
 window.end();
(The toolkit adds the new widgets to window until “end” is called).
Which is fine for small amounts of code but when adding lots of widgets (or updating the code at a later
date), it is easy to miss the end. A worse problem is if one of the widgets throws an exception; end
would not get called and window is now messed up. Contrast the above with:
 var window=GUI.Window();
 critical(window,begin,end){
 GUI.Button(); GUI.TextEditor();
 }

36 critical

Keywords

debug

Syntax
● _debug_ { block } [else { block }]
● _debug_(n) block [else { block }]
● _debug_(ON,debugLevel=1) { [block] }
● _debug_(OFF) {}

Notes
● If __DEBUG__ is 0 (ie debugging is not turned on in the Compiler), the else clause will always

happen.
● ON and OFF can be used to override the compiler settings. Once set, the new setting last for the

rest of the compilation unit or until changed with _debug_.
See Also: Keywords.__DEBUG__, Keywords.comments (#if/#else/#endif)

Abstract
Include debugging information or just general verbosity in your code. You can turn this on or off from
the command line or within your code.

Discussion
debug provides a way to include or exclude code at compile time. If N and N >= __DEBUG__,
debugBlock happens.

Examples:
__DEBUG__ is 0

● _debug_ { println("checkpoint"); // This line is NOT compiled
else { println("hoho"); } // This line is compiled

__DEBUG__ is 1
● _debug_ { println("checkpoint"); // This line is compiled

else { println("hoho"); } // This line is NOT compiled
● _debug_(2) { println("checkpoint"); // compiled

else { println("hoho"); } // NOT compiled

__DEBUG__ is 5
● _debug_ { println("checkpoint"); // This line is compiled

else { println("hoho"); } // This line is NOT compiled
● _debug_(2) { println("checkpoint"); // NOT compiled

else { println("hoho"); } // compiled

 37

Keywords

do

Syntax
● do{ block }while(control)
● do(count){ block }

See Also: Keywords.foreach, Keywords.while, Keywords.break, Keywords.continue, loop, reduce.

Abstract
A do while condition-is-true loop or a do n-times loop.

Discussion
There are two types of do loop:

1. Repeatedly run the block code while the control evaluates to True. The control is tested after
<block> is run, so it is run at least once. Thus
 do{ println("foo"); }while(False);
prints “foo” once.

2. Do a block n times. In this case, count is tested BEFORE the block is run and the block is run
until count reaches zero. So
do(0){ println("foo"); }
doesn't do anything.

● If count is not positive, no looping.
● There is no loop index.
● The count is converted to an integer. Thus, the following are equivalent:

do(3) { println("foo"); }
do("3"){ println("foo"); }
do(3.5){ println("foo"); }

Examples:
n:=0; do{ println(n+=1); }while(n<5); → 1 2 3 4 5
n:=0; do(5){ println(n+=1); } → 1 2 3 4 5
n:=100; do{ println(n); }while (n<5); → 100

38 do

Keywords

fcn

Syntax: Creation
● fcn name{ block }
● fcn name(prototype){ block }
● fcn{ block } // anonymous (lambda) function
● fcn(prototype){ block }
● fcn [[attribues]][name][(prototype)]{ block }
● fcn ([type]name …){ block }
● fcn ([(fmt)], …) … or fcn ([(fmt)]name, …) …
● 'wrap(prototype){ block }

Syntax: Calling
● fcnName()
● fcnName(parameters)
● Calling object methods has the same syntax.

Returns
● Creation: The function
● Calling: The result of running the function code block, unless interrupted by an exception.

Notes
● self.fcn is the running function object.
● vm.arglist is the list of parameters to the running function, vm.numArgs is length of the arglist.
● The compiler is “style” agnostic.
● Function names can be up to 80 characters long and can use the characters “a-zA-Z0-9_”, in

other words: underscore, digits, upper or lower case letters. A name can not start with a digit.
● Names are case sensitive.
● The possible attributes are mixin=return value, private and public (the default). A mixin is a

object that the compiler assumes the function will return. It is not enforced. For example,
fcn [mixin=1]f{ return(5) } and fcn [mixin=Int]f{ return(5) } are the same.

● The type attributes for parameter lists are short hand for mixin (see above). The compiler will
verify that an operation on the parameter is valid for a parameter of that type. For example,
fcn f([List]a){ a.bitAnd(0xf) } will generate an error as bitAnd is not a method of List.
The is no enforcement of this outside of the function (eg f(123) is legal).

● Fmt attributes are used to break apart passed in parameters. A parameter name is optional, but
useful if you want to refer to both forms. For example, fcn f([(a,b,c)]) indicates the first
parameter is to be separated into three register values (eg f(L(1,2,3)) → a,b,c:=L(1,2,3)) ;
fcn([(a,(b,c))]) specifies a twice nested parameter. As with list assignment, “_” can be used
to ignore parts (eg fcn f([(a,_,c)])).

● 'wrap wraps registers and parameters in enclosing blocks for use in a function. One way lexical
scoping. See Objects.Deferred.'wrap for more information.

See Also: Objects.Fcn, Objects.Class, Objects.Deferred.'wrap, Keywords.return, Objects.VM.arglist,
numArgs, pasteArgs.

Abstract
Create, call or refer to a user defined function.
Functions can be anonymous (lambda functions).
All functions inherit from Objects.Fcn.

 39

Keywords

Discussion
Functions encapsulate code. The “fcn” keyword is used to create user defined functions, which can then
be run (called) or passed to other objects. Functions are “bound” to the class instance they are created in
(which may be implicit), thus, a function, in any context, can refer to the class variables in the class
instance it is bound to.
All functions implicitly inherit from the Fcn object, which gives them some unique methods and
properties.

Special Names
There are several names that are “special” to a Class :
 __constructor, init, liftoff, splashdown
See Keywords.Class for more information.

Function Definition
Almost all zkl programming is creating functions (and classes). Fortunately, it is easy, just wrap code in
braces and give it a name:
 fcn helloWorld{ println("Hello World"); }
When run: helloWorld(), the function prints “Hello World”.

Some Syntax Details
The compiler pretty much ignores whitespace and doesn't care how your code is arranged, with a few
exceptions:

● Function calls: If the compiler sees a word immediately followed by a opening parenthesis, it is
assumed to be a function call. Thus println (x) is different from println(x) and will
probably cause a syntax error.

● Dot (“.”) is used to create compound references to objects (basically navigate around the object
hierarchy). The compiler doesn't care if there is whitespace in front of the dot, dot always is
attached to the previous object. Thus self.fcn is the same as self .fcn. Note that there can
not be space after the dot. This can help with code layout for long lines:
 foo(1,2,3).bar(4,5,6);
is the same as
 foo(1,2,3)
 .bar(4,5,6);

● Tokens don't need whitespace around them. 1+2 is the same as 1 + 2, {print(x)} is the same as
{ print(x) }.

● Semicolon (;) is the expression terminator. It informs the compiler that a code construct is done.
If the compiler can figure out that the expression is done anyway, the semi is optional, but it
good idea not to let the compiler make too many decisions for you.
{ print(x); } is the same as { print(x) } and { print(x);;;;;;; }
Extras are ignored.

Return Value

All functions return a value, explicitly or implicitly. There is no restrictions on what a function can
return or any requirement that the return type has to be consistent. In addition, multivalued return is
supported.

40 fcn

Keywords

The “return” and “returnClass” keywords are used to explicitly end a function and return a value. If
return isn't used, the result of the last calculation as the function flows out of the function body is the
implicit return value. Thus, the following are equivalent:
 { return(1) } and { 1 }

A function can return values of different types:
fcn f(x){
 if(x==1) return(1); // return number
 return("2"); // return string
}

A multi-valued return is just returning a list. It is up to the caller to know how it wants to handle the list.
The following are equivalent:
 return(T(1,2,3)) and return(1,2,3)
See Keywords.return for more information.

Parameters
There is no enforcement of parameter type or the number of, by either the compiler or the VM. If
required parameter doesn't exist, a runtime error occurs. For example:
 fcn f(x){ return(x + 1); }
 f(); // runtime error, not a compile error
If there more parameters are passed to the function than are used, or are specified by the prototype,
nobody cares. This can be considered a good thing, as it makes C's varargs very simple. Another place
where this is very helpful is where different objects share an API but some functions have optional
parameters; a program can use many different objects with no change.
If a parameter is expected to be a certain type, it is up to the function to enforce that, you can't do it at
compile time. Ideally, the parameter will morph into the proper type (for example, integer to float or
string to integer), otherwise a conversion error will probably be thrown. vm.argsMatch can be helpful in
this case.

A function parameter can be many different things: object, function call, if statements, try/catch
statements, function or class definitions.
Here is an example:
day=1;
println(
 if (1==(day / 10)) ">10" else "<10",
 " ",
 try { L("th","st","nd","rd")[day % 10] }
 catch{ "th" });
This prints “<10 st”. If day is 3, “<10 rd” and if day is 15, “>10 th”.

It is common to create functions to pass to other functions. See Anonymous Functions below.

Attributes
The settable attributes are public (the default) and private. The “private” attribute means that
Class.resolve will not be able to find this class but it is visible throughout the file it is defined in. The
static attribute is set by the VM.

Fmt attribute

 41

Keywords

Very handy when parameters are composites that would be easier to deal with broken up. Anything that
can be used in list assignment can broken apart. For example, a dictionaries key/value pairs:
fcn f([(k,v)]){ println(k," : ",v) }
Dictionary("one",1,"two",2).pump(Void,f)
 two : 2
 one : 1
f("foo") → “f : o”, f("f") → error

Pass By Reference
Function parameters are passed by reference. If a parameter is a mutable type (such as a list), and you
modify it, then the calling code will see the change. If the parameter isn't mutable (numbers, strings),
you can't change it. This sometimes leads to the following code:
fcn f(list){
 tmp:=list.copy(); // make a copy, don't change parameter
 // munge tmp
}

Default Parameters
A function prototype can define defaults (as in C++ or Java). In addition, the default does not have to be
a constant value, it is evaluated at run time and can be almost anything, such as a function call or
definition. Any parameter can have a default, or not. The default is run in the context of the class the
function is defined in.
Syntax: fcn … (p1=default,p2=default, …);
Examples

● fcn f(x=5){} f(); → f(5)
● fcn f(text=ask("Your name is: ")){}

f("Fred"); // sets text to "Fred"
f(); // at runtime, Console.ask is called

● fcn f(a=1,b,c=3)){}
f() → f(1), f(6) → f(6), f(6,7) → f(6,7,3)

● class C{ var v=123; fcn f(p=v){ p }}
C.f() → 123
cf=C.f; C.v=5; cf() → 5

Anonymous Functions

The function name is optional. There are places where the name is superfluous, such as passing a
function to another function. Such “lambda” functions can be assigned to a variable if you need to keep
track of them. That variable then behaves the same as a named function. One place where this is useful
is in classes where you want a function to have multiple names, such as a placeholder or when
implementing to a API specification.
 class C{
 fcn f(x){ … }
 var f2=f;
 }
Now, C.f(1) and C.f2(1) are the same (assuming that C's constructor has been run). If we wanted to
change bar to another function, that is easy:
 C.f2=fcn(x){ … }
Anonymous functions are used a lot with methods like apply and filter. For example, to find all the
strings in a list, you could use:

42 fcn

Keywords

 L(1,"two",3.0).filter(fcn(x){ x.isType("") }) → L(“two”)
Anonymous functions are always private.

Nested Functions

Functions can be created inside of other functions but they must be anonymous.
fcn f{
 fcn bar{} // error
 f2:=fcn{} // OK, put fcn into register "f2"
 f2(); // call the nested function
 someOtherFcn(f2); // pass the nested function
}
This is because nested functions don't really exist (since functions can't contain functions), all functions
are promoted to the nearest enclosing class. A named, nested function could cause a name conflicts with
another function, and, in practice, there is no difference in usage.

Function Variables
Variables declared in a function are local and persistent to that function (they are instance variables that
are invisible outside of that function). They are initialized in the class constructor. They are not thread
safe.
See also: Keywords.var, Objects.fcn:Instance Variable
class C{
 var cv=123; // instance variable
 class D{ cv=4 } // change cv, see fv2
 fcn f{
 var fv1=7; // good. An invisible instance variable
 var fv2=cv; // bad, fv2 initialized when?
 fv1+=1; // f(); f(); 9→
 }
 f.v1; // won’t compile
}
C.f.fv1; // won’t compile

“Script” Code
Code that isn't explicitly in a function is collected, by the compiler, into the class constructor. The
“RootClass” constructor contains all the code, in a file, that is outside of any function. This is because all
functions reside in a class and all code resides in a function. Most of the time, nobody cares, but it is
useful to know if you are rooting around compiled code, using reflection, trying to find something you
know is there.
For example, if a file consists of the following:
 fcn factorial(x){ return(x and x*self.fcn(x - 1) or 1); }
and you were to compile the file, how would you run the factorial function? Just running it doesn't do
anything. Looking deeper, the file, from the compilers point of view, actually looks like:
 class RootClass#{
 fcn factorial(x) { return(x and x*self.fcn(x - 1) or 1); }
 fcn __constructor{ return(self); }
 }
If we want to treat the file as a script, one that runs the factorial program with user input, we could just
add a call as part of the script:

 43

Keywords

 fcn factorial(x){ return(x and x*self.fcn(x - 1) or 1); }
 x:=factorial(ask("Take the factorial of: ").toInt());
 println(x);
then the constructor becomes:
 fcn __constructor{
 x:=factorial(ask("Take the factorial of: ").toInt());
 println(x);
 return(self);
 }
And if we run the “script”:
 >zkl fact.zkl
 Take the factorial of: 4
 24
Knowing this, if we were to compile the file inside a running program:
 factFile:=Compiler.Compiler.compileFile("fact.zkl");
 println(factFile) → Class(fact)
(a RootClass takes the name of the file by default)
we can treat it as a script and run the constructor:
 factFile.__constructor();
and it would behave as in the previous example. What if we wanted to run the factorial function itself?
Well, since it is a RootClass that contains the function, we can run it:
 factFile.factorial(4)

Script Parameters
Scripts are just constructor functions living a double life. As such, it is sometimes difficult to know if
one should treat them as a function or script. They can be both. The most problematic is parameters;
constructors don't take parameters but scripts might (command line arguments); without some careful
orchestration, a big ugly mess ensues. The first thing your script should do is to use
Attributes(script) so that the loader will know that this is a script and there is no confusion about
what file is. Then, if the script is run from the command line:
 C:\>zkl myscript arg
the constructor is called with arg. Your script can test this26:
 Attributes(script);
 if (vm.numArgs){…} // I'm being run as a script
If you have loaded the script, you can call it:
 myscript.__constructor(arg);
The difference is, from the command line, arglist will be all strings and won't be all of argv.
Another way of handling parameters is to use init. Since setting the script attribute prevents a script from
being copied, init provides a convenient way to run the script:
 Attributes(script);
 fcn init(arg){ doScriptStuff(arg); } // or __constructor(arg)
The compiler doesn't have init call the constructor for static classes (which scripts are) so init becomes a
front end for the script/constructor itself. Now, you can run the script:
 myscript(arg);

Binding
The compiler “binds” (that is, statically links) function calls if it can find the function while compiling
code. If it can't find the function (it might be in another file for example), it passes off that responsibility

26 Assuming your script takes parameters; if not, just ignore this.

44 fcn

Keywords

to the VM (to find at runtime). This later case is known as late binding. This form is usually transparent
to the user (unless an error occurs). You can also explicitly use late binding. Experienced C
programmers will be familiar with some of these, the others are also widely used.

● Calling functions stored in list. C programmers will recognize this as a array of pointers to
functions:
functions:=L(Console.println, fcn(x){ println("fcn 2") });
functions[0]("foo"); // → “foo”
functions[1]("foo"); // → “fcn 2”

● Searching a class for a function by name. There are two ways to do this, the first explicitly looks
for a function and is more work than it should be:
class C{ fcn f{ println(self.fcn) } }
names:=C.fcns.apply("name"); // → L(“nullFcn”,”f”)
n :=names.index("f"); // → 1
C.fcns[n](); // → “Fcn(f)”
The next method is easy but will find more than functions. The VM uses this method for late
binding:
C.resolve("f")(); // → “Fcn(f)”

● The resolve method works on any object, so you can use it to find, and call, methods:
(123).resolve("toList")(); // → L(123)
Not overly useful as it is the same as (123).toList().

Tail Recursion

Tail recursion27 is a special case of recursion that converts a recursive function call into a goto. Consider
the classic factorial program:
 1) fcn fact(x){
 if(0==x) return(1);
 return(x*self.fcn(x-1));
 }
This program uses the stack to store the intermediate values of x until it can multiply them together to
calculate the factorial. We can re-write this to explicitly pass the intermediate values during the
recursion:
 2) fcn fact(x,N=1){
 if(0==x) return(N);

 return(self.fcn(x–1,N * x));
 }
This can then be flattened into an iterative function:
 fcn fact(x,N=1){
 if(0==x) return(N);
 x-=1; N*=x;
 goto fact;
 }
Which is what the compiler does when given (2)28. This has great benefits in stack space and time29 for
heavily recursive functions. One of tail recursion optimizations (as opposed to tail calls) is that default

27 See also http://wikipedia.org/wiki/Tail_recursion
28 The compiler isn't smart enough to convert (1) into (2).
29 Function calls are computationally expensive.

 45

http://wikipedia.org/wiki/Tail_recursion

Keywords

parameters are NOT expanded when making the recursive tail call. They are for the initial external call
to the function but within the function, it is expected that you know what the parameters should be30.

Another example: Summing the contents of a list. In a functional language, you might see something
like:
sum x:xs
 sum []=0
 sum (x:xs)=x+sum(xs)
In zkl, we have to make the accumulator explicit, thus this would be:
fcn sum(list,s=0){
 if (not list) return(s);
 return(sum(list[1,*], s+list[0]));
}
sum(T(1,2,3)) → 6
sum(T(1,2,3),"") → “123”

Tail Calls

A tail call is a goto, with parameters, to another function or method. As such, it doesn't consume stack
space because it doesn't ever return to the caller. Consider
 fcn f1(n){ if(n){ println("f1 : ",n); return(f2(n-1)) }}
 fcn f2(n){ if(n){ println("f2 : ",n); return(f1(n-1)) }}
 f1(5) → “f1 : 5” “f2 : 4” “f1 : 3” “f2 : 2” “f1 : 1”
This is a form of “long chain” recursion, that, because of tail calls, doesn't recurse. The compiler
recognizes that return(f2(n-1)) is equivalent to goto f2 and changes the code from a call to a jump.
The advantage is that no stack space is used for the recursion (or call). In fact, if n-1 is changed to just n
in the example, the code will run forever without using any additional stack space.

It can't happen here
Since a try/catch block has to be able to catch exceptions thrown by the callee, tail call optimization
can't be done in the try or catch blocks (the else block is OK). Tail recursion optimization will be done.

In general, tail call optimization just happens and you don't need to know about it. Which is good
because there isn't much you can do about it either way, other than write your code so that the compiler
can use tail calls.

Functions are not Closures

Unlike closures, functions can not, in general, access data outside of their scope. The one exception is
that functions have full access to the instance data in their defining class instance31.

30 This is purely an effort to further reduce overhead. A “regular” tail call has parameters expanded.
31 A function is itself instance data. Usually.

46 fcn

Keywords

Consider:
class C{ var v; reg r;
 fcn f(a){ var v2; reg r2;
 v; // OK
 r; // error, r is out of scope
 fcn{ r2; a; } // error, r2 & a are out of scope
 fcn{ v2 } // OK, v2 is really a class var
 }
 fcn g{ f(); f.v2; } // error, no outside access to fcn vars
}
If you need closure functionality, see the Objects.Object.fp methods and Objects.Deferred.'wrap (which
provide one way closures).

 47

Keywords

foreach

Syntax
● foreach i in (Sequence | Stream){ block }
● foreach i in (Walker) { block }
● foreach i,j,k in (x){ … } blow apart x
● foreach i,j,k in (x,y,z){ … } nested or cascading foreach
● foreach i in (){ } fallthrough{ block }

Notes
● { and } are required.
● i is the name of the control variable. It is created local to block (as a register).
● __iWalker: Name of the iterator, its scope is inside block (or just outside block).
● If there are are multiple control variables, list assignment is used and the first is used for the

walker name (eg __iWalker).
See Also: Keywords.while, Keywords.do, Objects.Walker, Objects.Utils.range, filter, pump, reduce.

Abstract
Foreach iterates over each item in a sequence or stream.

Discussion
Foreach is a variation on the classic for or while loop. Objects that support iteration will have a walker
function.

Examples
● To process every line of a text file:

foreach line in (File("text.txt")) { process(line); }
● To look at every character in a string:

foreach char in ("foo") { println(char); }
prints “f”, “o” and “o”.

● foreach n in (5) is short hand for foreach n in (Utils.range(5)). n ranges between 0
and 4.

● foreach a,b in (L(L(1,2),L(3,4))) { println(a,b) } → “12”, “34”
zip can be handy here.

● foreach a,b in (3,4){} expands to foreach a in (3){ foreach b in (4){}.

Ranges (See Objects.Utils.range)
Ranges allows foreach to emulate the C for loop:
zkl C equivalent (int i; float f;)
foreach i in (10) for (i = 0; i < 10; i++)
foreach i in (Utils.range(10)) for (i = 0; i < 10; i++)
foreach i in (Utils.range(3,10)) for (i = 3; i < 10; i++)
foreach i in (Utils.range(10,0,-1) for (i = 10; i > 0; i--)
foreach f in (Utils.range(0.0,1,0.001) for (f = 0.0; f < 1.0; f += 0.001)

48 foreach

Keywords

foreach j in (s) { block } is equivalent to:
 {
 reg __jWalker=s.walker();
 while(_jWalker._next()){
 reg j=__jWalker.value;
 <block>
 }
 }

[a..b], [a .. b] and [a..b,step] are syntactic sugar for ranges that include b. So
foreach I in ([3..10]) is equivalent to C's for(i=3;i<=10;i++)

Ranges usually iterate over ints, floats or characters. See Objects.Utils.range for the finer points
(especially regarding floats).

fallthrough
A fallthrough block is run if running code “falls off” the end the foreach loop, ie the loop runs to
completation, ie a break statement isn't run.
Notes:

● The fallthrough block is in the same scope as the foreach block, ie you can access registers
created in the foreach block.

● Break and continue are outside the foreach block, ie break(n) becomes break(n+1).
● If a fallthrough block is attached to a cascading foreach, it is undefined which foreach it gets

attached to.

 49

Keywords

if else

Syntax
● if(control) true-expression
● if(control){ true-block }
● if(control) true-clause else false-clause
● if(control) true-clause else if(control) true-clause
● if(control) true-clause else if(control) true-clause else false-clause
● if(c) true-clause else if(c) true-clause else if(c) true-clause … [else …]32

● clause is a expression or block
● Controls include assignment, if, and try in addition to the expected.

Result
● The last calculation, which could be the control, true-clause or false-clause, if control flows off

the end of the if (ie not terminated by return, etc).

Abstract
Conditional branching.

Warnings
● n:=5; if (n+=1>5) n=0; isn't going to do what you expect. In fact, n isn't even incremented.

The control is parsed as n+=(1>5) == n+=0 (because “+=” has a lower precedence than “>”).
You meant n:=5; if((n+=1) > 5) n=0;

● Similarly, if(g(v=f(),2,3)) doesn't compile, as the compiler gets confused, seeing
if(g(v=(f(),2,3))) which looks like a badly formed multiple assignment. You can rewrite this
as if(g((v=f()),2,3)).

● This will also surprise you:
 x:=1; if(0) try{} catch{} else { x=2; }
x is 1, NOT 2. This is because try also has a else clause. Wrap this in a block:
 x:=1; if(0){ try{} catch{} } else x=2;
The following are equivalent:
if 0){ try{} catch{} else { x=2; }} else x=3;
if(0) try{} catch{} else { x=2; } else x=3;

● Be careful if you use side effects:
a:=1; if (a or a+=1) println(a); → 1
a:=1; if (a and a+=1) println(a); → 2

● If you use if as part of an expression, you may need, or want, to wrap it in ()s:
(if(X) 2 else 3) + 5 or (if(X) 2 else 3; + 5)
r=(if(X) 2 else 3.0); println(r.type);

Discussion
Conditions are evaluated on an “as-needed” basis and order is not specified.

Conditional Compilation
Conditional compilation makes it easy to comment out a block of code or switch between multiple
blocks of code. The code has to parse but it doesn't have to compile. It can be used in the same way as
C's #if 0 … #elif … #else … #endif but is not as powerful or useful since only 0, 1, True, False are

32 I need a sanity-clause!

50 if else

Keywords

evaluated and functions and classes are compiled no matter what (due to the way the compiler rewrites
code).

● if (True) block is the same as block, in other words, block is never compiled.
if (1) … is the same, as is const doit=1; if (doit) …

● if (True) block1 else block2 is the same as block1
● if (False) block generates no code; ditto with if(0)
● if (False) block1 else block2 is the same as block2

Result
The if statement actually has a result that you can use. For example, consider:

x:=if(0) 1 else "two";
This will always set x to “two”. You can use this to duplicate C's “?” conditional operator.
zkl C

if (expression) true-clause else false-clause expression ? true-clause : false-clause

The if statement can be part of a another if statement, assignment, a function parameter and other places.
● if can used as a parameter:

f(if (1) 2 else 3); // → f(2)
● You can even use if inside an if:

if (if (0) 1 else 2) f(); // → if (1) f() → f()

A particularly ugly example is found in Date.prettyDay. Here is part of the code:
fcn prettyDay(year, month, day){
 return("%s, the %s%s of %s %s".fmt(
 …,
 if (1==(day/10)) "th" // 1*
 else // *0, *1, *2, *3
 try { T("th","st","nd","rd")[day%10] }
 catch{"th"} // all other days
 , …);
}
Here, the if statement is a function parameter (to fmt) and has a gnarly else clause, all in an attempt to
calculate the suffix of a day in a month.

It should be noted that if the one of the clauses leaves the if statement (such as return or break), there
will be no result.

 51

Keywords

include

Syntax
● include(filename [, filename ...])
● include("filename" [, filename ...])

Notes
● If the file name includes a “/”, quotes are needed because the tokenizer sees “/” as division, not

as a path name.
include(bar.zkl, "foo/bar.zkl");

● On Windows, you can use back slashes (“\”) in the file name. Quotes are optional in this case.
You will need to double the backslashes or use a raw string. The following are equivalent:
include(foo\\bar.zkl);
include("C:\\foo\\bar.zkl");
include(0'"C:\foo\bar.zkl");
include("C:/foo/bar.zkl");

● System.includePath ($zklIncludePath) is searched.
● On Windows, it doesn’t matter if you use slash “/” or back slash (“\”).
● There is no restrictions on the file name, just that it can be opened.

Throws: SyntaxError

Abstract
Treat the contents of a file as part of the file being compiled. The include keyword is replaced by the
contents of the file and parsed.

Discussion
Search order (success stops the search, failure throws a SyntaxError):

1. An attempt is made to open filename.
2. The include path is searched:

● The include search path is stored in System.includePath, which is a list generated from the
system environment variable zklIncludePath (if it exists, otherwise a default is used).

● Each element of the list as the file name appended and an attempt is made to open that file.

Include is very useful for sharing constants between programs. For example, if classes in several files
use a magic cookie whose value is “MagicCookie”, rather than hard code this value in each file, you
could put it into a file (named “cookie.h.zkl” for this example): const MAGIC_COOKIE = "Cookie
Monster";
Then, in each of the code files, use
 include(cookie.h.zkl);
 println("The magic cookie is ",MAGIC_COOKIE);
to print “The magic cookie is Cookie Monster".

52 include

Keywords

[[]] (List Comprehension)

Syntax: [[(parameters); sequence; action]]
 [[([parameters]); sequence,filter,…;s,f,…; action]]
 [[…;_]]: Action is the identity function.
 [&…]]: → Walker
Returns: List or Walker
See Also: Keywords.Range ([]), Objects.Utils.zipWith, Objects.Walker

Abstract
List comprehension33 is a way of describing list generation, typically done with nested loops, concisely.
If action is “_”, it is converted to self.fcn.idFcn (the identity function).

Discussion
For example, to construct the list L(L(0,”a”),L(0,”b”),L(1,”a”),L(1,”b”)), you could use
 r:=L();
 foreach n in ([0..1])
 { foreach c in (["a".."b"]){r.append(T(n,c))}}
or
 [[(n,c); [0..1]; ["a".."b"];_]]34

which reads left to right just like the loop version.
The comprehension has the benefit of being able to create an infinite list:
 r:=[&(n,c); [0..]; ["a".."b"]; T]]
 r.walk(8) → L(L(0,"a"),L(0,"b"),L(1,"a"),L(1,"b"),L(2,"a"),L(2,"b"),L(3,"a"),L(3,"b"))
 r.walk(2) → L(L(4,"a"),L(4,"b"))
(n,c) creates the variables that will be used for each “section” (the areas between semi colons), “n” for
the first and “n”, “c” for the next two (just as in the loop version). The action is T, which is a shortcut for
T.create(n,c) → ROList.

What if you want a sequence based on one of the variables? Use a function to create it. And, speaking of
functions, there is a short for creating them: {} will prepend fcn(…) to the braces (the parameters are
based on the variables that are in scope for that section).

Another example: Create a sequence of (x,y,2xy) triples where x is 0…100 & x2>40 and y is 1…x & y is
a multiple of 3 & y2 < 100-x2:
 [[(x,y); [0..100],{x*x>40}; {[1..x]},{y%3==0},{y*y<100-x*x};
 {return(x,y,2*x*y)}]]
 → L(L(7,3,42),L(7,6,84),L(8,3,48),L(9,3,54))
Or:
 [[(x,y); [0..100],{x*x>40}; {[3..x,3]},{y*y<100-x*x};
 {return(x,y,2*x*y)}]]
Or, if you just want the 2xys:
 [[(x,y); [0..100],{x*x>40}; {[1..x]},{y%3==0},{y*y<100-x*x};
 '*(2)]]
 → L(42,84,48,54)

33 http://en.wikipedia.org/wiki/List_comprehension
34 AKA Cartesian Product

 53

http://en.wikipedia.org/wiki/List_comprehension
http://en.wikipedia.org/wiki/List_comprehension

Keywords

Anything that has a walker35 method can be used as a sequence. Filters and action can be any runnable
that handles the parameters (you can use the fp methods to adjust them).
If you use fcn or 'wrap, you need to use the full signature. For example, rewriting the above example:
 [[(x,y); [0..100],fcn(x){x*x>40};
 fcn(x,y){[1..x]},fcn(x,y){y%3==0},fcn(x,y){y*y<100-x*x};
 fcn(x,y){return(x,y,2*x*y)}]]

If the Walker comprehension doesn't generate any results, TheEnd is thrown:
 [&(); [1..10],fcn{False}; T]].walk() → TheEnd
If you don't like that, use pump instead of walk:
 [&(); [1..10],{False}; {}]].pump(List) → L()
The “do it now” comprehension acts like the pump case.

More Examples
xs.apply(f) ≈ [[(x); f]]
 T(1,2,3).apply('+(1)) == [[(); T(1,2,3);'+(1)]]
 → T(2,3,4)
xs.filter(f) ≈ [[(x); xs,f; _]]
 T(1,2,3).filter(fcn(x){x.isEven}) ==
 [[(x); T(1,2,3),{x.isEven}; _]]
 → T(2)
n:=3; [[();T(n),'>(0);_]] → L(3) is a slow way of writing
 n:=3; if(n>0)T(n) else T;

35 If you supply a Walker, all but the first walker needs to be able to be restarted (eg List but not File or Pipe). If you supply
the object, a new walker will be created each time.

54 [[]] (List Comprehension)

Keywords

onExit

Syntax
● onExit(exitObject [,args])
● { … onExitBlock(exitObject [,args]) … }

See Also: Keywords.critical, Objects.VM.xxception

Abstract
OnExit funnels exits through an object, usually a block of code. All attempts to leave the fenced code are
redirected through the exit code. The exit code is run in a walled garden (or sandbox), from which
exceptions can't escape and context in which it was created can't get in (exit functions are not closures).
An exit function can access its instance data.

Discussion
OnExit is used to make sure a chunk of code is run no matter what, after another chunk of code has
finished running. The best example of this is when you need to make sure clean up happens, such as
allocating a resource that needs to be freed before exiting.

Notes
● OnExit queues objects to be run at the end of a function.
● OnExitBlock queues for the end of the block.
● Exit objects are queued, and run, in the order in which they are encountered. If not encountered,

it won't be run.
● The exit object is wrapped in a Deferred.once object, thus any parameters are evaluated when

onExit is encountered and those are what the code will see when it is run.
fcn f(a)
 { onExit(Console.println,a); a=123; println("a=",a); }
f(5) → “a=123”, “5”

● The exit object can be any object but functions and methods are the most useful.
● There can be more than one exit object per block or function.
● Aside from changes via parameters, and side effects, the originating code is oblivious to the

running of the exit code.
● If a thrown exception caused the exit code to be run, vm.xxception has the exception. If an

uncatchable exception was thrown (such as OutOfMemory), xxception is True.
● An exit object is run only once although it may be recreated many times and the new instance

run (for example, calling a function more than once).

Examples
● Write to a file until something happens, then close it36:

f:=File("foo.txt","w"); onExit(f.close);
while (True) { x:=something(); f.write(x); }

● Don’t leave a Lock locked if an error occurs (this is basically critical):
lock:=Atomic.Lock(); lock.acquire(); onExit(lock.release);
doSomething();

● foreach n in (5) { onExitBlock(fcn(a) { println(a) },n); }

36 GC will also close the file, but we don't know when.

 55

Keywords

→ 0,1,2,3,4
● By adding these two lines to the start of a function, you can add tracing to that function:

 println("Entering ",self.fcn.name,vm.arglist);
 onExit(Console.println,"Leaving ",self.fcn.name);
You can make this easier to use with:
fcn trace(f,args){
 println("Entering ",f.name," ",args);
 Console.println.fp("Leaving ",f.name);
}
#text TRACE onExit(trace(self.fcn,vm.arglist));37

fcn g{
 #tokenize TRACE // cut&paste this line
 … println("widget made"); …
}
g(1,2,3); → “Entering g L(1,2,3)”, “widget made”, “Leaving g”

Warnings
● While the exit code is called by the running thread, that does not imply it is thread safe; another

thread may also be running it or it may access data that another thread is also looking at. Take
precautions if cross threading is a possibility.

● Tail calls can change the onExit order. Consider:
fcn g{ print("G") }
fcn f1 { onExit(Console.print,"F"); r:=g(); return(r); }
fcn f2 { onExit(Console.print,"F"); return(g()); }
fcn f3 { onExit(Console.print,"F"); try {return(g())}catch{} }
f1() → “GF”, f2() → “FG”, f3() → “GF”,
f1 is pretty clear, f2 isn't so. return(g()) is turned into a “goto g”, which is the exit of f238. f3
can't be turned into a tail call because that would obliterate the try.

Details
Here is a peek under the covers: OnExit(f,a,b,c) is transformed into something like
reg __onExitFcn=ROList; __onExitFcn+=Deferred.once(f,a,b,c); and stashed where the VM
can find it. One take away from this is that you need to be careful if f can return a Deferred as it will be
evaluated, which may not be what you want.

Acknowledgments
This functionality was inspired by/copied from Google's Go language, keyword defer.

37 Doing it this way also allows you to turn off TRACE for all fcns (with #if or _debug_)
38 Indeed, g can not detect that it was even called from f2 as f2s presence on the call stack is obliterated.

56 onExit

Keywords

pimport (packaging)

Syntax
● i=pimport("fileName"), f(pimport("dir/fileName"))

Notes:
● When pimporting a code file, do not include the extension. If pimporting a data file (such as a

gif), do include the extension.
● The filename is relative to the current directory, no path search is done.

See Also: Objects.Import, Objects.Utils.wad

Abstract
pimport imports a file (just like Import) and caches the result.
“zkl --package top_of_tree.zkl” compiles and packages the entire tree.

Discussion
Pimport expands the functionality of import for use in a “packaged” program; a program made up of
more than one file (both source and data/resource files). Recursive pimports are handled and pimport
also tells the compiler the complete program structure. When fileA.zkl is compiled with the --package
option, all the files pimported by fileA are compiled (or loaded if data) and bundled into one runnable
.zsc file. This process is recursive: if fileA pimports fileB and fileB pimports fileC, both fileB and fileC
will be bundled with fileA.

Creating a program “tree” with a bunch of files
When a program passes a certain size, it is easier to deal with it by chunking; dividing functionality into
files of code and resources. A program can then exist in any of four states: all source code, all compiled,
a mix of source or compiled, or packaged into a ZSC wad. For ease of development, a program needs to
be runnable in any of these states and pimport facilitates that.

By way of illustration, consider the Frame-O-Matic program, a collection of fifteen files: eight source
files, five images, one text file and a DLL. The root of the tree, frameOmatic.zkl is the “main” file and
“wraps” the program into one unit.
Here are the dependencies (most of which are recursive, either directly or indirectly):

frameOmatic.zkl

frame.zkl io.zkl plot.zkl

frame.zkl io.zkl plot.zkl

data.zkl
io.zkl

trig.zkl
utils.zkl

data.zkl
frame.zkl
trig.zkl
utils.zkl

data.zkl
frame.zkl

plotFLTK.zkl
trig.zkl

 57

Keywords

data.zkl io.zkl trig.zkl utils.zkl

frame.zkl
io.zkl

frame.zkl
data.zkl
utils.zkl
trig.zkl

data.zkl
utils.zkl

data.zkl
trig.zkl

plotFLTK.zkl

frame.zkl
io.zkl

applications.gif,
help.gif, open.gif,
pen.gif, save.gif

help.txt zklFLTK.dll

As you can see the dependencies are very recursive (eg frame.zkl ↔ data.zkl, frame.zkl → utils.zkl →
data.zkl → frame.zkl). When one file imports another file that, in turn, imports the first file, it is an
infinite loop and thus very slow. Some languages, such as C, take a “see no evil” and “have the
programmer save explicit state” approach (using header files with prototypes and state, and linking after
compiling). Another approach is to [indirectly] cache the imported files and let the compiler reference
the cache as needed.
The biggest advantage of the latter method is that the program describes itself and all of its code files
and resources so no Makefile or external description is needed39.

Some code. Note that .zkl and .zsc extensions are not included:
● frameOmatic.zkl

var [const] Frame=pimport("frame");
Frame.buildAbike();

● frame.zkl
var[const] FrameData=pimport("data"),Utils=pimport("utils");
FrameData.getData("wheel");
Utils.distance(p1,p2);

● data.zkl
var [const] Frame=pimport("frame");
Frame.find(z);

● plot.zkl
reg [const] PlotFLTK=pimport("plotFLTK");
plotter=PlotFLTK(Plotter,minX,minY, maxX,maxY);

● plotFLTK.zkl
Attributes(static);
var FLTK=Import("zklFLTK"); // DLL
FLTK.get_image("pen",pimport("pen.gif"));

A twisty maze of references, all alike40

Each .zkl files can be compiled into a .zsc file (or not) or the tree toped at frameOmatic.zkl can be
compiled and packaged into frameo.zsc (if it were named frameOmatic.zsc, it is ambiguous which
should be run, the .zsc or .zkl?). The reason to not compile files is when writing a program, files change
a lot and the edit/recompile/re-run cycle is slower than edit/re-run. When the contents of a file become
stable, compiling it can be worth the quicker load time.

39 The drawback being no incremental app compiles – making a package is a whole program compile.
40 For those who remember the Colossal Cave Adventure.

58 pimport (packaging)

Keywords

Here is what happens when frameOmatic is run in each of the four states.
● All source (zkl frameOmatic.zkl in the FOM directory)

FOM pimports frame (.zkl is appended), which pimports data, which pimports frame again, etc.
When FOM imports frame, it caches it. When data.zkl wants to import frame, it checks the
cache, finds frame and uses that.
When plotFLTK.zkl pimports pen.gif, the gif file is read into a Data.
Note that zklFLTK (the FLTK DLL) is loaded with Import, not pimport. pimport doesn't handle
libraries, it thinks they are just Data. So the DLL is loaded at runtime (and cached by the VM),
and not packaged in the wad.
FOM is then run as if it were a single file.

● All compiled (zkl frameOmatic.zsc in the FOM directory)
This is the same as above, except that .zsc is appended (instead of .zkl) and FOM.zsc is run as if
it were a single file.

● A mix of source and compiled (zkl frameOmatic.zsc or .zkl in the FOM directory)
This is the usual case when writing an application.
When a file is pimported, file.zsc is looked for first (on the assumption the compiled file is more
desirable), then file.zkl. Then things proceed as above.

● Packaged into a ZSC wad (zkl frameo.zsc from any directory)
“zkl --package frameOmatic.zkl -o frameo”
The compiler processes pimports as above (which describe the entire program and its resources),
compiles (or reads) the pimported files, adds code to build the cache and writes the entire wad to
frameo.zsc, which is one file and can be run as such.

● Once frameo.zsc has been created, it is the complete application and the other files are not
needed to run it. Just the VM (zkl) and DLLs.

Notes:
● Notice the Attributes(static) in plotFLTK.zkl. This is because plot does a PlotFLTK()

which treats the entire file a class and [attempts] to create an new instance. This is not a “best
practice”. If the file were not static, a copy would be made and all the pimport information would
be reset to Void (in the new class), which breaks things.

● When loading a Data object (such as a image or text file), the packaged application returns a
const Data (since the data is in the application itself), otherwise, it is a writable Data. This is an
issue if you want to edit the data; in that case make a copy:
 html:=pimport("frameOmatic.html").copy();

 59

Keywords

print, println

Syntax
● println(args)
● print(args)

Notes
● Print and println aren’t actually keywords.

See Also: Objects.Console, Objects.Object.print

Abstract
Print and println are syntactic sugar for Console.print and Console.println.

Discussion
Print and println are used so much that the compiler saves on keyboard wear and tear by redirecting
these to the Console object. Since they aren’t keywords, they can be redefined by things like functions,
variables or classes.

If you want to pass print to a function or store it in a list, use the “real” name:
 L(Console.println);
 println(Console.print);
 p:=Console.println; p("Hello");

60 print, println

Keywords

[] (Range)

Syntax: [start..], [start..stop], [start..stop|*,step=1]
Returns: Walker
See Also: Keywords.foreach, Objects.Int.Walker, Objects.Walker

Abstract
Range creates a Walker that provides the functionality of the “traditional” for loop: iterating in discrete
steps. Ranges are over Ints, Floats or characters.
[a..b], and [a .. b] create ranges that include b. [a..b,step]might include b. [a..] is the same as
[a..*], which is an infinite range starting at a. To create an infinite stepped range, use *: [a..*,step].

Discussion
A range provides more information than a do() loop; mainly control of the step size and an index
variable at the expense of verbosity and overhead. Range is intended to provide similar functionality to
C's for loops. A range Walker has all the functionality of a Walker.
zkl C equivalent (int i; float f;)
foreach i in ([3..10]) for (i = 3; i < 10; i++)
foreach i in ([10..0,-1]) for (i = 10; 0 < i; i--)
foreach f in ([0.0 ..1,0.1])41 for (f = 0.0; f < 1.0; f += 0.1)
foreach i in ([3..*]) for (i = 3; 1; i++)
do(10) for (i = 10; --i;)

● The [a..b]42 notation indicates a range that includes b. So
foreach i in ([3..10]) is equivalent to C's for (i=3; i<=10; i++)

● A range doesn't need to be created with constants, any calculation will do. a:=2; b:=5;
[a+b..a*b] → [7..10].

● [1..0].walk() → TheEnd as that range is empty. [1..0].pump(List) → L().

Special Cases
● Character ranges: ["a".."d"] → “a”, “b”, “c”, “d”

* isn't special: [(40).toChar()..*] → “(”,“)”, “*”, thus ["a"..] == ["a"..*] ==
["a".."*"] → [] as “a” > “*”.
Only the first character is used. ["efg".."abc",-2] → “e”, “c”, “a”
This is restricted to ASCII characters.

● If start is a float, the values are floats.
● If all start, stop and step don't have fractioal parts, the range is the same as with ints.
● Otherwise, ½step is added to stop so the terminal value is “close to” stop.

[1.3..5] → 1.3, 2.3, 3.3, 4.3, 5.3
[0.0..0.29,0.1] → 0.0, 0.1, 0.2, 0.3
[1.5 .. 0.1,-0.5] → 1.5, 1.0, 0.5, 0.0

● That isn't the case with integers (or characters); if a step takes the range beyond the terminal, the
terminal is skipped:
[1..6,2] → 1, 3, 5
[7..0,-2] → 7, 5, 3, 1

41 Usually. See Special Cases.
42 For ints and characters.

 61

Keywords

["a".."d",2] → “a”, ”c”

62 [] (Range)

Keywords

reg

Syntax
● reg name;
● reg name=expression | fcn | class;
● reg name=(expression);
● reg name=expression], name [= expression] …;
● reg [[attributes]] name=…
● name=expression | fcn | class | block; (name exists)
● name:=expression | fcn | class | block; (name might exist)
● n1:=n2:= … := …
● n1,n2, … := …

Notes
● Registers are created with value Void. reg r; is the same as reg r=Void;.
● Registers can be created almost anywhere and are local to “their” block.
● Assignment happens at run time.
● Registers are typeless, they can hold any object.
● Register names can be up to 80 characters long and can use the characters “a-zA-Z0-9_”, in other

words: underscore, digits, upper or lower case letters. “_” is not a valid name and the name can't
start with a digit.

● Names are case sensitive.
● Attributes are const, mixin, private, protected, proxy and public.

● The default is [private], public and protected are ignored.
● See Keywords.var for what the attributes do.

See Also: Keywords.var

Abstract
Create a block local variable. The scope of a register is limited to the block it is declared in and blocks
contained in that block. Registers can be created implicitly by assignment: r:=5; is the same as reg
r=5; if there isn't another object named “r” in this block.

Discussion
Register variables are variables whose life span is that of the block they are in. You can create them with
the reg keyword or implicitly with assignment. For example, foo:=Void; creates a block local variable.
Reg is preferred when you want to be explicit about the scope of the variable.

Registers are never instance data and are not visible outside of their scope and are only alive at run time.

:=
r:=5 is roughly equivalent to reg r=5. If r doesn't exist in the block, it is created as a register. If r
already exits (as a register), r:=5 is the same as r=5. Examples:

● reg a; a:=b:=5; creates two registers and assigns 5 to both of them.
● a,b,c:=T(1,2,3) creates three registers and assigns 1 to a, 2 to b and 3 to c.
● if((r:=something())==5){ println(r); }
● r:=1;

{ r:=5; // this r is 5, a different register from above
} // r is 1 here, previous r is out of scope

 63

Keywords

:= is restricted to registers. For chained assignment, := can be intermixed with =: var v; v=r:=5;
assigns 5 to v and creates and assigns 5 to r.
In list assignment, “_” is thrown away. a,_:=L(1,2) is the same as reg a=1.

Typeless
Registers are typeless and have no restrictions on the objects they can hold. Thus, the following:
 r:=Void;
 r:=123;
 r:="foo";
is valid and assigns objects of three different types to the same register.

Scope
“reg” is short for register, a type of variable that has a limited life span. In this case, the scope (where
and when the variable is accessible) is the block it was created in and all blocks that enclosed by that
block. This is compile time, not run time (dynamic), scoping.

It is import to note that a register is always visible in its entire scope, regardless of where it is declared
(explicitly or implicitly). This will surprise most programmers. Even in languages such as C++, where
you can declare variables pretty much at will, you usually can’t access them until after they have been
declared.

Note
The “write-onceness” is block local; in some situations, there can be multiple writes. Consider:
 foreach j in (3){reg [const] r=j;} → r is 0,1,2

Examples
● Create two registers, one explicitly and one implicitly:

reg r1=1;
r2:=2;

● Declare registers after use:
 println(x,y); reg x=1; y:=2; // prints "VoidVoid"
Even though the variables were declared after use, they were not set until after the print
statement.

● Scoping
{
 reg r1=1;
 {
 reg r2=2;
 println(r1); // prints "1"
 }
 println(r2); // error, out of scope
}

64 reg

Keywords

return

Syntax
● return(object)
● return(object,…) → return(ROList(object,…))
● return() → return(Void)

Notes
● Return is a function so the ()s are required, no spaces between them and return.
● Return is illegal in a constructor or init function.

See Also: Keywords.returnClass, Keywords.fcn

Abstract
Return from a function to the calling function.

Discussion
All functions return a value (implicitly if execution flows off the end of the function). Return explicitly
ends the function and returns a single object. If that object is a List, the caller is free to interpret that as a
multi-valued return (see below). A function can return any object, it can return different types of objects
in the same function (unlike statically typed languages such as C). For example, the following is legal:
fcn f{
 if (wrong) return(Void);
 return(True);
}

Constructors and init functions are “special” and don’t allow you to use return. The reason is, when you
are building a new class, the only way you can access the new class is if it returns itself, which it does at
the end of init or the constructor. Return would short cut that and, aside from side effects, effectively
turning the class instance creation into a no-op. Of course, there are cases where you are only interested
in those side effects, which is why returnClass exits.

Multi-valued Return

It can very nice for a function to return more than one value, for example, the result of a calculation and
a status to indicate if the calculation is valid or not. If you have used C, you are familiar with errerno,
passing in a pointer to status code, and other annoyances. Multi-valued returns allow you more concisely
express the results and allow the caller more freedom to deal with those results. For example, in
 fcn calc{… return(result, status)}
 r,s=calc();
the caller can decide what to do if the status indicates something is amiss. (Aside: in many cases, calc
may deal with an invalid status cases by throwing an exception but that may not be the best way or place
to deal with the problem). One interesting things to note:

● x=calc() will assign an ROList to x, which is ROList(r,s).
● If you only want the result, you could use

r=calc()[0]; or r,_=calc();
which assigns the first returned item to r. Note that this is a “special” case because the compiler
can’t tell, in r=calc(), if you want all of the result or just the first item.

● For the general case, assignment works as follows:
● x=… return(a,b,c,…)

 65

Keywords

x gets a read only list of the returned items.
● x1,x2,…,xn=… return(a,b,c,…,n)

x1 gets the first element of the list, x2 gets the second and so forth through xn. If the list
contains more than n items, the leftovers are discarded. Thus
a,b=… return(1,2,3,4,5);
a=1, b=2 and 3,4 and 5 are discarded. If there are less than n items in the list, an error is
thrown at run time.

● If one of the items is “_”, it is thrown away. a,_,c=…

66 return

Keywords

returnClass

Syntax: returnClass(object)
Notes

● returnClass is only legal in a constructor or init function.
● But not legal in constructors if the class contains init. Put returnClass in init.
● One parameter is required and is usually a class instance (hence the name).
● returnClass is a function, so no space between returnClass and the ()s.

See Also: Keywords.return

Abstract
In the normal course of events, return is illegal in init() or a constructor. ReturnClass is for those
abnormal events. ReturnClass is legal where return is illegal and vice versa (subject to the fine print in
the Notes section above).

Discussion
Normally, class constructors and class init functions have a single exit point and return self when the
code finishes running. This is almost always what you want (otherwise the class you just created would
be invisible and get garbage collected, never to be seen) but there is the rare occasions when you want or
need to return something other than self.

ReturnClass is named based on the assumption that you’ll use it to return a class instance other than self
but that isn’t required; you can return any object. But, if you do return a non instance, you might want to
say to yourself “hmmm, I wonder if there might be a better way to do this”.

The usual case is a root class (file) that you would like to impersonate one of its contained classes.
Examples:

● The Exception class is big class that contains lots of exception classes and exception templates.
You don’t use the big class directly, it has too much baggage, you use a contained class. To throw
an generic exception, the “correct” code is throw(Exception.Exception("Boo")) but people
forget and it’s extra work so init helps out by returning a Exception.Exception instance for
you:
 fcn init(text) { returnClass(Exception(text)); }
Thus, throw (Exception("Boo")) is equivalent to
 throw(Exception.Exception("Boo"))

● The test suites are contained in files that use an instance of Test.UnitTester to test a small piece
of functionality and, since there is a lot of functionality to test, there are lots of files. The tests are
run in the constructor:
 tester.testSrc(test-code);
 tester.testSrc(another-test);
 …
A UnitTester instance collects the stats for all the tests run in the constructor, and, when the all
tests have finished running, prints the results. This is all well and good if you are just testing one
area but, if you are doing a system test, there is too much data. The solution is to have a test
collector that runs all the tests, collects the results (contained in UnitTesters) and summarizes.
But how does it collect the UnitTesters? The test suites would normally return instances of
themselves (since the file is just a constructor), not UnitTesters. You could dig around in the test

 67

Keywords

looking for an instance of a UnitTest or force the test to contain a variable of a certain name that
holds the tester but that would be a pain in the butt. ReturnClass to the rescue:
 tester.stats(); // print test results
 returnClass(tester); // return UnitTester instance
Now, as each test finishes, it returns the test results (and gets garbage collected since its job is
done) so somebody can do an executive summery.

You can also use returnClass to return self if, for some reason, you don’t want to flow off the end of the
constructor.

68 returnClass

Keywords

self

Syntax
● self, self.*
● self.fcn, self.fcn()

Notes
● self must the first word in a data reference.
● self.fcn() is a recursive call.

See Also: Objects.class, Keywords.fcn (tail recursion)

Abstract
Refer to the current class instance.

Discussion
Self is the name of the current class instance, which always exists. It can be used to remove ambiguity
from a reference or to clarify code. See class for a full list of things it can refer to.
self.fcn is special and refers to the currently running function. It can be used for recursion, and is used
by the compiler as hint to check for tail recursion.

Examples
● class C{

 var c;
 println(self); // prints "Class(C)"
 fcn init(c){
 var f;
 println(self.fcn); // prints "Fcn(init)"
 self.c=c; // sets instance var C.c to function arg c
 self.fcn.f=1; // error, use f instead

 // to refer to function var
 }
 self.fcn(); // error, infinite recursion if

// constructor calls itself
}

● fcn(x){ // factorial
 if(0==x) return(1); // 0! = 1
 return(x*self.fcn(x - 1)); // x! = x*(x-1)!
}

 69

Keywords

switch

Syntax
● switch(control) { case(value){ do_this_if_eq_block } }
● switch (control){ case(value,value) block else default }

default is a block or expression, else is the last clause
● switch(control){ case(…)[fallthrough] block case(){} }
● switch [arglist]{ case(object …) … }
● Note: break does not apply to switch.

Result
● The last calculation, which is usually one of the block results, if control flows off the end (ie not

terminated by return, etc).

Abstract
Conditional branching, a more compact syntax than if/else if.
Also allows switching on the calling parameters.

Discussion
The switch statement is [somewhat] equivalent to a if/else if/else construct.
 switch(x){
 case(a) { fa(); }
 case(c,d){ fcd(); }
 else { default(); }
 }
is equivalent to
 reg X=x;
 if(X==a){ fa(); }
 else if(X==c or X==d){ fcd(); }
 else { default(); }
The default case (“else”) has to be the last case and will be run if none of the other cases match. Case
statements have the same syntax as a function call. The order in which the cases are tested is not
specified, all of the cases may or may not be evaluated (so don't use side effects).

fallthrough
When a matched case block finishes running, the switch is done. Unless the case is tagged as
“fallthrough”, in which case it jumps to the next case block and continues running there. Execution will
continue falling until it falls into an untagged block. The default case can be fallen into. For example
 switch(4){
 case(4) [fallthrough]{ print(44) }
 case("a")[fallthrough]{ print("A") }
 else {print("**")}
 } → “44A**”

switch as cond
Lisp’s cond: (cond (test)(action) …) can be modeled as switch(True){case(test){}… }. This
can result in “cleaner” code than a wad of if then elsess.

70 switch

Keywords

n:=someResult();
switch(True){
 case(n==4) {}
 case(n.isOdd){}
 else {}
}

Result
Switch has a defined result if the control flows though the entire switch statement.

● If a block is run, the switch result is the block result.
● If there is no match, the result might be the control but might not be so use a default case if it

matters.
Example
 r:=switch(4){ case(2){ 22 } case(4){ 44 } }; → 44

Oddities
● switch(n){} works and doesn't do anything.
● switch(n){case(){x}} is a no-op and switch(n){case{x}} is an error.
● switch(n){ else { println("Always prints"); }}

Notes
● You can use switch in an expression but you may need to wrap it in ()s or terminate it with a “;”:

(switch(X){case(Y){1}} +5) or (switch(X){case(Y){1}}) +5
if (X) switch(Y){ case(Z){1} }; foo();

[arglist]
Switch [arglist] is a VM.argsMatch wrapper to make it a bit more palatable/useful. For example:
fcn f{
 switch [arglist]{
 case(1) [fallthrough] {}
 case(self.NullClass) { println("number or class") }
 case(List) { println("list") }
 case(*,*) { println("match any 2 args"); }
 case() { println("no args"); }
 else { println("anything"); }
 }
}
f(self), f(5), f(6.7) → “number or class”
f(Void) → “anything”
f() → “no args”
f("test",4) → “match any 2 args”
The cases are evaluated in order so put the long matches and specific matches first, followed by the
more and more general cases.

 71

Keywords

throw

Syntax: throw(Exception)
Notes

● The exception has to an Exception class, that is, a Class that inherits from Exception.
See Also: Keywords.try/catch, Objects.Exception

Abstract
Throw is used to signal that something out of the ordinary has occurred and it can’t be handled here so
control is being transferred to somewhere where it can be handled.

Discussion
Throw is a rich mans goto. Modern coding societies consider goto to be poor hygiene so we use throw
instead. Throw is a goto with a wealth of constraints attached (golden handcuffs if you will). In
exchange, we get cleaner code that is easier to understand and less prone to error. Hopefully, you have
already been indoctrinated about the benefits, failing that, you’ll have to trust me. Or not, no matter
because goto doesn’t exist so it can’t be abused.

For example throw(Exception.BadDay) stops the current control flow and searches for the nearest
catch block that can deal with a bad day. See try for the gory details.

See Objects.Exception for a list of already created exceptions (like BadDay) that you can use.

Note that some exceptions can’t be caught. If you come across a situation so dire that recovery is
impossible, you can throw something like Exception.KissOfDeath.

Most exceptions allow you to do minor run time customizations, most often adding a custom message.
To reuse the bad example, you could throw(Exception.BadDay("My hair is a mess!")) and the
catching code would be able to determine why this is such a bad day.

What if a suitable exception just doesn’t exist? You can create your own:
 class YouBad(Exception.Exception){
 Exception.init("You bad boy you");
 fcn init(msg=Void){ if(msg) text=msg; }
 }
This is the “standard” way to create a new exception, one that acts like those in the Exception class. The
new exception name is “YouBad” and the default text is “You bad boy you”. Now, you can use the
following:
 throw(YouBad)
 throw(YouBad("Thats just crazy")) if you want to change the text.

In general, use one the provided exception if it is at all close, people who use your code will more likely
expect one of those. Definitely create your own exception if your new class doesn’t fit the mold or it
help avoid confusing your class with another class.

72 throw

Keywords

Wishing for Goto

Sometimes, it just seems it would be easier to just use a goto to get stuff done. Consider:
 walker=File("test.txt").walker();
 foreach line in (walker){
 if (Void!=line.find("GO!")) goto printRestOfFile;
 }
 throw(Exception.AssertionError("GO not found in file"));
printRestOfFile:
 walker.walk(Console.print);
All we want to do is read from a file until we find a line with “GO!” in it, then print the rest of the file. If
“GO!” isn't found, that is an error. Goto seems to be pretty nice way to skip around the error processing
and get on with things. And it is. But, there is no goto, so we have to do something else. The usual way
is to use a boolean flag:
foundGO=False;
foreach line in (walker){
 if (Void!=line.find("GO!")){ foundGO=True; break; }
}
if (not foundGO)
 throw(Exception.AssertionError("GO not found in file"));
which seems like a step backwards in readability. And it really gets bad when you need to nest these.
Exceptions give a way of simulating goto and “break to label”.
try{
 foreach line in (walker){
 if (Void!=line.find("GO!")) throw(Exception.TheEnd);
 }
 throw(Exception.AssertionError("GO not found in file"));
}catch(TheEnd){}
Still not as direct as a goto but it is a nice alternative to flags. You can also create your own exceptions
and use those.
 class Label1(Exception.Exception){ fcn init{} }
 try{ … throw(Label1); … }catch(Label1){}

A more twisted version of this is to use exceptions to simulate C's switch statement. For example,
processing user input or method handling.

 73

Keywords

try/catch

Syntax
● try { block } catch { block }
● try { block } catch(exceptionName [,exceptionName ...])

{ block }
● try { block }

catch(exceptionName(s)) { block }
[catch(…) { … }]
[catch { … }]

● try { block } catch[(…)] { block } fallthrough { block }
● try { block } catch[(…)] { block } fallthrough try
● try { … } catch { println(__exception); }

Result
● The last calculation, if control flows through to the end of the try/catch (ie not terminated by

return, etc).
Notes

● Exception names are the names of Exception classes. For example, throw(Exception.BadDay)
throws an Exception class named “BadDay”. To catch that exception, use catch(BadDay).

● Names are plain text fixed at compile time; no consts, vars, etc.
● catch and catch() match all catchable exceptions.
● Catch order is important. It is first come, first served, so put “catch” as the last catch block.
● Some exceptions are uncatchable. For example: Exception.KissOfDeath and

Exception.OutOfMemory.
● Special exception names: “*”, “!name”, “name.”, “0” and words starting with “+” or “-”.

● “*” means match any catchable exception; catch(*) is longhand for catch or catch().
● “!name” means “don't catch this exception”. If you want to catch all exceptions but

BadDay, use catch(!BadDay,*). Exception names are matched from left to right.
● “name.” (name dot) means match if the thrown exception is, or is a child of, Exception

name (ie look up through the parent tree for name)43.
● “+” and “–“ set catch options.

The options are:
● +trace: Print a stack trace
● -trace: Don't print a stack trace.

These options remain set for the remaining catches (attached to the current try) or until
changed. By themselves, the options don't match anything. For example:
try { … }
catch(NoTrace1,+trace,Trace1,-trace,NoTrace2) { … }
catch(+trace,Trace2) { … }
catch { … } // will get stack trace from above
The NoTrace* exceptions won't get stack traces, all others will.
If you want to catch everything and get a stack trace, use:
catch(+trace,*) { … }
Which is equivalent to:
catch(+trace) {} // doesn't match anything
catch { … } // match everything, trace is on

43 __exception.isChildOf(name) = True

74 try/catch

Keywords

● 0 means match all uncatchable exceptions. Needless to say, don’t use this! They are
uncatchable for a reason. If you feel compelled to, try to use critical or onExit first. I’m
not going to tell you the syntax but it is probably obvious.

● Inside of a catch block, register __exception contains the thrown exception. If your
catch block handles an exception and you want to re-throw it, use
throw(__exception).

● throw is legal in a try, catch or fallthrough block.
● A finally clause isn’t provided, onExitBlock provides similar functionality.
● Try can also be used in a function parameter and in a control expression (if, loops).
● Or in an expression. You may need to wrap it in ()s or terminate it with a “;”:

if (X) try{Y}catch{}; a+b; (try{X}catch{Y}) + 5;
See Also: Keywords.throw, onExitBlock, critical, Objects.Exception

Abstract
Try to run some code, catch any errors that occur.

Discussion
Like all good modern computer languages, zkl lacks a goto statement (C doesn't count because it is a
perfect language). To make up for this grievous loss, zkl uses that other common feature: exceptions. If
you've used Java, C++, C# or Python, you know how this works, but the syntax and rules are a bit
different:
fcn consultHoroscope {
 gettingOutOfBedIsABadIdea = throwTheBonesForToday();
 if (gettingOutOfBedIsABadIdea)
 throw(Exception.BadDay("Coffee please"));
}
try { consultHoroscope(); }
catch(BadDay) {
 println("I heard somebody say: ", __exception.text);
}
When this code is run and my horoscope for today isn't so good, the code will print:
“I heard somebody say: Coffee please”

The rules are, basically: You have to throw something derived from the Exception class and you can
catch anything, everything or nothing (well, not quite but you get the idea).

Try doesn’t have a “finally” clause like Java or Python, the “onExitBlock” keyword provides that
functionality.

fallthrough
The fallthrough clause is useful for minimizing the amount of code under try control. Usually, try is
used where you expect it is reasonable for an exception to occur; you write your code against that
expectation. If you enclose a big block of code in a try, you might get exceptions that you are not
expecting and thus don't handle correctly. In that case, it might be better not to catch the exceptions at all
and let them propagate. Fallthrough helps you do this by basically extending the try clause minus
exception handling. Using an fallthrough usually boils down to personal preference.
Note: The fallthrough block has the same scope as the try block, ie you can access registers created in
the try block.

 75

Keywords

In this example, in the no error case, we want to doSomething and doSomeMore but if doSomething has
issues, we have to catch them. After catching, we do not want do anything and the fallthrough clause lets
us jump around doSomething. You can read this as “try to doSomething and catch these exceptions,
else, if there were no exceptions, doSomeMore”.
try { doSomething(); }
catch(E1) {}
catch(E2) {}
fallthrough { doSomeMore(); }

Control Flow
The control flow through a try catch fallthrough is:

● Do the try block.
● If no error is thrown, flow off the end of try block into the fallthrough block, if it exists,

otherwise, just flow off the end (unless throw, return, continue or break is called).
● If an error is thrown:

● Move up the call stack one level (ie if thrown in a try block, don’t look for a match there).
● Continue walking until a catch block is found and check to see the exception name

matches one of the catch name(s).
● If it doesn’t, continue walking up the call stack

If nobody catches the exception, the current VM is halted and the exception flows up to
the calling VM44. If that VM doesn't catch it, repeat until we pop out of the current thread,
which terminates the thread45 (which may stop the program if the thread is the main
thread).

● If a catch if found:
● The exception is stashed in __exception (a register in the catch block).
● The catch block is run and the fallthrough clause is ignored (as are other catches).

Avoiding Yucky Code
Try can be used to avoid value checking. Let's say you are looking at something that contains all kinds
of things, but you only care about one case and, unfortunately, that case is a bit nasty to test as it is pretty
convoluted. How to avoid checking? Here is a real world example from the compiler: checking to see if
a function call is tail recursive. Check out this code:
reg s;
try{ // if the the next line to blows a gasket, s remains Void
 s=((arg := self.args[0].objs[0]).isInstanceOf(FcnCall) and
 arg.name=="self.fcn");
}catch{} // nope, not tail recursion
fallthrough{ // might be ...
 if (s){ // s is not Void or False, we made a valid assumption
 println("Tail call!");
 rewriteCodeToDoTailRecursion();
 }
}
The code has to look in two lists, which can be empty or hold all kinds of things we don't care about, for
a function call to “self.fcn”46. Without using a try, the code would have to check that each list was not

44 VMs and methods create VMs on an as needed basis to run code. Eg fibers.
45 And that isn't a happy death, see Keywords.class.splashdown
46 This is checking for “return(self.fcn(...))”

76 try/catch

Keywords

empty47, then check that each has the right kind of item in the right place, all before it can check for the
function call. What a hair ball. Instead, we just assume it is going to work and write the code
accordingly. If it doesn't, an exception is thrown, we catch it and go on our merry way. The other
important point is that the real work is done in the fallthrough clause. We do that so, if we screw up, we
won't catch those exceptions. If rewriteCodeToDoTailRecursion was in the try block, our catch would
have to catch specific exceptions, and further, we would have to test to find out what those exceptions
might be and we definitely don't want to do that much work.

Exception Hierarchies
The core exception tree is pretty flat, this keeps things simple. However, sometimes a deeper hierarchy
can make your code cleaner; you can catch a particular exception or an exception tree. This exception
specializes a BadDay:
 class WorseDay(Exception.BadDay){
 const TEXT = "I'm having a really bad day";
 text = TEXT; // globally set self.BadDay.Exception.text48

 fcn init(msg = TEXT) { BadDay.init(msg); }
 }
In use:
 try { doSomething() }
 catch(BadDay.) {} // catch exceptions based on BadDay
If doSomething throws WorseDay or BadDay, it will be caught. You could also catch WorseDay or both:
 try { doSomething() }
 catch(WorseDay) {} // extra strength aspirin
 catch(BadDay) {} // warm milk and cookies
 catch(BadDay.) {} // a bad day I don't know about: Advil

And finally
To add a “finally” clause to try, use onExitBlock:
fcn f(t){
 try{ onExitBlock(fcn{println(vm.xxception)});
 if(t) throw(Exception.BadDay);
 print("try succeeded: ");
 }catch { println("try failed: "); }
}
f(0) → “Try succeeded: Void”
f(1) → “BadDay(I'm having a bad day)”
 “Try failed: ”

If you want to do the finally after catching, use:
fcn f(t){
 { // block wrapper for onExitBlock & try
 onExitBlock(…); // in same block as try
 try{…}catch{…}
 }
}
f(0) → “Try succeeded: Void”
f(1) → “Try failed: Void”

47 With if (args) ... or args[0,1]
48 This is done so throw(WorseDay) will have have “right” text without having to create an instance. In this example,

throw(WorseDay()) has the same result but does more work.

 77

Keywords

Using a block wrapper ties onExitBlock and try into one unit with the exit code running immediately
after the try/catch code.

78 try/catch

Keywords

var

Syntax
● var name
● var name=expression | fcn | class
● var name=(expression)
● var name [= expression], name [= expression] …
● var [attributes] name [= …]
● var [mixin] name=class | Vault object …
● var [mixin=class | Vault object] name [= …]
● v1=v2= … = … Set exiting variables or registers to the same value
● v1,v2, … = X List assignment
● v1,v2, … = 1,2,3 Mulitple assignment

Notes
● Variables are typeless, they can hold any object.
● Variables are created with value Void.
● Even though creation and assignment can be co-located, the compiler moves variable creation to

the start of the class they are declared in while assignment remains at the point of declaration.
Except when it doesn't (see function variables).

● For class variables, assignment happens at run time, in the constructor.
● Function variables (variables declared in a function):

● Are actually class variables49. This notation makes it easier to “confine” class variables to
a function and hide those variables from other functions.

● Variables declared in “init” are treated the same as variables created in the constructor
(init is considered an extension of the constructor).
class{ fcn init{ var v=1; }} is the same as
class{ var v; fcn init{ v=1; }}
Assignment happens when init is run.

● For other functions:
● Initialization values are restricted to things that are available to the containing

class constructor. You can't use parameters and usually can't use other co-located
variables.

● Variable initialization occurs early during class construction, after the parent class
constructor(s) are run but before the class constructor is run. This is good and bad.
Ideally, initializers should be totally contained (eg fcn f{ var v=123; }).

● You can use a contained class constructor to initialize variables you might
otherwise not have access to. The following doesn't work because
BigNum is initialized after b is initialized:
var [const] BI=Import.lib("zklBigNum");
fcn f{ var b=BI(5); } // b is Void

49 If you are a C programmer, think of them as in “void fcn(){ static int var; }”

 79

Keywords

This does work (C is constructed where defined, order is important!):
var [const] BI=Import.lib("zklBigNum");
class C{ fcn f{ var b=BI(5); } }

Even better (assuming BigNum isn’t needed else
where):
fcn f{
 var [const]
 BI=Import.lib("zklBigNum");
 var b=BI(5);
}

● You will not be able to access the variables from outside of the function50.
● When doing an assignment as part of a var declaration, you may need to wrap the expression in

().
● Variable names can be up to 80 characters long and can use the characters “a-zA-Z0-9_”, in other

words: underscore, digits, upper or lower case letters. “_” is not a valid name and the name can't
start with a digit.

● There is a limit of 200 variables per class.
● Names are case sensitive.
● Attributes are const, mixin, private, protected, proxy and public.

● The default attribute is public.
● Const/“write-once” variables are protected variables that can be set only once. You need

to set them in the var statement. Actually, “write-once” is more like “write-in-only-one-
place”, see below.
Const vars try to become mixins.

● A mixin is a variable that the compiler pretends has the same type as the mixin value.
This allows the compiler to do some static checking. It can be set to anything at
runtime51. Use as a “this is the API” var and set to the real object at runtime. As an
example,
 var [mixin] t=L(1,2,3);52

tells the compiler to expect a List or something with List semantics. It then knows that
t.pmp(f) is an error and
 t=t.walker(); t.pump(List,f);
is OK since both List and Walker contain pump.
See also: Device Drivers in the Illustrated Examples Appendix.

● Private variables are not found by resolve but are visible throughout the file they are
defined in.

● Protected means the variable is read only outside of the class it is defined in or child
classes.

● A variable with the proxy attribute is an “active/trampoline” variable, referencing it
causes an action to happen. For example
var [proxy] f=fcn{ println("test"); } f; → “test”

See Also: Keywords.reg (:=), Objects.Class.varNames, Objects.Class.vars

50 Not strictly true – you can poke around the class vars and find the fcn vars
51 It really is just a variable with a compile time chaperone.
52 The compiler doesn't always know the result of a function call, so something like var [mixin] plus1=Op("+",1)

generates a syntax error. Rewrite as var [mixin=Op] plus1=Op("+",1)

80 var

Keywords

Abstract
Create a class local (instance) variable. The scope of a variable is the class it is created in.

Discussion
Variables are instance data and differ from registers in that they live as long as the class they are in lives.
The only way to create an instance variable is with var. Creating a variable implicitly always creates a
register.

Typeless
Variables are typeless and have no restrictions on the objects they can hold. Thus, the following
 var r=Void;
 r=123;
 r="foo";
are valid and assign objects of three different types to the same variable.

Creating
Var creates object local variables in the nearest enclosing class. Vars are noted at parse time and are
visible throughout the object, regardless of where they were declared. This will surprise most
programmers. Even in languages such as C++, where you can declare variables pretty much at will, you
usually can’t access them until after they have been declared (ie they are Void, which is not good).

Constructor and init variables are initialized where they are declared.

Variables in init are moved to the constructor
If a variable is created in the init function, it is promoted to the constructor of the enclosing class. For
example:
 class C{ fcn init(x){ var [const] v=x; }}
 is the same as
 class C{ var [const] v; fcn init(x){ v=x }}
if the latter worked.

Scope

● Class (instance) variables
These variables can be referenced, by name, from anywhere, inside or outside of the class, from
other classes or files. The var is wholly contained in the class and every instance of the class
(including the “reference” instance) has it own set of vars. If the var exists in the file being
compiled, the compiler is usually able to resolve the reference, otherwise, it leaves the resolution
to runtime. The class constructor will initialize vars that have initializers, before that, the var's
value is Void.

● Function variables
These are class variables with limited visibility. They are not shared amongst other copies of the
same function. In other words, if class C contains function f and f contains var v:
 class C{ fcn f{ var v; } }
and there are two instances of C, the two variables v are separate.

Constant (Write Once) and protected Variables

If the variable was declared const, the compiler will only allow the variable to be set when it is declared.

 81

Keywords

 var [const] v=5; // OK
 v=6; // error
 class C{ var [const] v=1; } // OK
 class C{ var [const] v=1; v=2 } // error
 class C{ fcn init{ var [const] v=1; }} // C().v → 1
Write once variables are set when the function they are declared in is run.
Protected variables are similar, except they can be modified in their class or children classes.
Note: The “read onlyness” has no effect on values that are mutable. For example, if a read-only variable
is a list, that list can be changed:
 class C{ var [protected] v=L() }
 C.v.append(1); // OK, v hasn't changed, but contents have
 C.v[0]=1; // ditto

Note
The “write-onceness” is not strict; variables are set in one of two places:

● The init fcn for vars initialized declared there.
● The constructor for all other initialized vars.

This means direct calls to init or __constructor will reset all vars, including const ones.
 class C{ fcn init(n){ var [const] v=n; }}
 c=C(4); // c.v=4
 c.init(654); // c.v=654

A little more on mixins
Let's say you are using the BigNum DLL and wish to use it as a mixin. This is a problem because it is
not part of the system and your program will load it at run time. The work around is to also load it at
compile time so the compiler can access it.
 const IMPORTS // compile time
 { var BigNum=Import("zklBigNum"); }
 var [mixin=IMPORTS.BigNum] // run time
 BigNum=Import("zklBigNum");
 r:=BigNum.rand(0,10); // compile time check
generates a SyntaxError as rand should be spelled random.
“Template” classes can also be put into const space, where they can be used for syntax checking but
won't take up any space in compiled code.

List assignment

In a,b,c=X, a, b and c are assigned the first three items of X, where X gets to decide what those three
items are. The most obvious examples are:
 var a,b; reg c;
 a,b,c=L(1,2,3) → a=1, b=2, c=3
 a,b,c=L(1,2,3,4,5) → same as above, the rest of the list is ignored
 a,b,c=L(1) → error, not enough data
 fcn f{ return(1,2,3) } a,b,c=f(); → same as first example
However, it get even better:
 a,b="ABCDE" → a=“A”, b=“B”
 class C{ fcn __sGet(n){ return(n+5) }} a,b=C → a=5, b=6
Any object that supports sub-scripting (a __sGet method or function) also supports multiple assignment.
Functions implement multi-value returns in a way that mimics returning a list of the return values.

82 var

Keywords

If the assignment is of the form a,b,c=x,y,z; then it is the same as a=x; b=y; c=z; Note it takes [at
least] a y to to get this form.

If the assignment is of the form a=b=c=x; then it is the same as (a=(b=(c=x)); Note of caution: if the
left hand sides are compound into the same class (eg n.left.right=n.left=x) there is a good chance
that you will get the wrong result depending on how and when the left sides are computed.

Single assignment and multiple assignment can be mixed, as long as multiple is to the left of the single:
 a=b,c=L(1,2) → error
 a,b=c=L(1,2) → a=1, b=2, c=L(1,2)
“_” is thrown away: a,_=L(1,2) assigns 1 to a.
All the variables/registers must exist.

Note: The order of the assignments is undefined.

Proxy Variables

Proxy variables enable lots of wild and wacky things but can also be used to give classes Property like
functionality.
 class C{ var [private] broken=False, closed=False;
 var [proxy] isClosed=fcn{ (closed or broken) }}
Then, C.isClosed → False
A proxy variable is always called when it is referenced, which can yield odd results.
 var [proxy] p=1; p → 0 (as (0)()→ 0)
If you want to proxy another variable (or proxy), use Property:
 var v=123; var [proxy] p=Property("v"); p → 123
 fcn f{123} var [proxy] p=f, p2=Property("p"); p2 → 123
Proxies can be very handy when changing, updating or refactoring an existing API.

Off the Wall Examples
● class One{ var v; } println(One.v); // prints "Void"

class Three{ println(v); var v=4; } // prints "Void"
Even though the variable is declared, it is not set until the constructor is run and the constructor
does the println before it does the assignment.

● Class var assignment after the constructor is run and after a new instance is created:
class Two{ var v=1; fcn init{ v=2; } }
println(Two.v); // post constructor: prints "1"
println(Two().v); // new instance: prints "2"

● What does this do: { reg a=1; var a=2; } println(a); ? Probably not what you think, and
it is probably a surprise it even compiles. But compile it does and prints out Void. Bet you didn't
expect that. Not very intuitive; the key is to remember that creation and assignment are
separated, the code is transformed into var a; { reg a; a=1; a=2; } println(a); and
variables default to Void. The block register “a” is set twice and then thrown away. Save yourself
some grief and declare your variables and registers before you use them.

 83

Keywords

while

Syntax
● while (control){ block }
● while(control) { block }
● while(control) { block } fallthrough{ block }

See Also: Keywords.foreach, do, break, continue

Abstract
A while loop.

Discussion
Repeatedly run the block code while the control evaluates to True. The control is tested before block is
ever run, so if the initial test is False, block is never run.

Examples
Two ways to write the same infinite loop:
 while(True){ … }
 while(1) { … }

This doesn’t do anything: while(0) { println("hoho"); }

Print “123”: n:=0; while((n+=1)<4){ print(n); }
Note that that the above is very different from:
 n=0; while(n+=1<4){ print(n); }
This second loop is infinite; the control is parsed as (n+=(1<4)) ≈ n+=1).

fallthrough
A fallthrough block is run if running code “falls off” the end the loop, ie the loop runs to completation,
ie a break statement isn't run.
Note: The fallthrough block is in the same scope as the loop block, ie you can access registers created in
the while loop. Break and continue are outside the loop block, ie break(n) becomes break(n+1).

84 while

Objects

Objects

The zkl Objects

Young man, it's objects all the way down!
-- Elderly woman
 who clearly understands OOP

In zkl, objects are pervasive and first class, but it is not a “pure” object oriented language (like, for
example, SmallTalk). However, it is close enough that even those things you wouldn't normally think as
objects, such as numbers, are. Classes, functions, methods, etc are all objects that can be assigned to
variables, passed in function calls, created at run time, etc. If something is an object, it is a first class
object.

Attributes of Objects (See Objects.Object)
All objects have a common set of attributes:

● Name
● Type
● Methods
● Properties
● Operators: All objects have the same set of operators. But they might not be implemented.

It if often convenient to store a “pointer” to an object you are going to be using a bunch and use that to
save some typing.
For example:
 tester:=TheVault.Test.UnitTester();
 tester.testSrc("return(Void);","SyntaxError");

 Date:=Import("Time.Date");
 Date.nthDayInYear(2006,1,1);
 println(Date.ctime());
Some the the classes just contain utility functions so you don't need to create a class instance to use it,
just use the “static” class, as in the Date example above.

Attributes of Classes (See Objects.Class)
Classes are “fat” Objects – in addition to all the Object attributes, they can also contain classes,
functions, variables (instance data) and have parents (inheritance).

85

Objects

Programming
Creating a program in zkl is the process of creating new objects by combining existing objects. This
process looks pretty much like any other Algol like (or “curly-bracket”) language (such as C or Java), if
you have done any programming at all, zkl will very likely look familiar. Where it differs is the object
system; in zkl, it is typeless and dynamic, similar to that of SmallTalk and Python.

Environment Variables

Environment
Variable Name

zkl Property What and Default Value

zklRoot N/A This is used if a path needs to be constructed. It
can contain more than one path, each of which is
a directory.
Windows: C:/ZKL
Unix:

zklClassLeafs N/A After classPath has been built, this variable is
used to augment classPath. classPaths are
searched to find a leaf directory in the subtree.

zklClassPath System
.classPath

Where the loader looks for classes (source or
compiled).
“$zklRoot/.;$zklRoot/Src/Scripts;$zklRoot/Src;
$zklRoot/Built”

zklLibPath System
.libPath

Where zkl looks for shared libraries.
“$zklRoot/.;$zklRoot/Lib”

zklIncludePath System
.includePath

Where the compiler looks for include files when
compiling the “include” keyword.
“$zklRoot/.;$zklRoot/Include;$zklRoot/Src;
$zklRoot/LibSrc”

zklIgnoreWad N/A If 1, zkl will attempt to load the Core classes from
the file system. Used for debugging or when
building a new system.
0; classPath is “C:/ZKL/Built”, libPath and
includePath are not set.

When the VM starts up, it creates these properties (see Objects.System Properties). If the associated
environment variable exits, it is used; otherwise, $zklRoot53 is prepended to the default paths to create
the property. In both cases, if the resulting directory doesn't exist, it won't be in the property54.

Names

Object names (variables, etc) start with a letter and have up to 80 case sensitive upper or lower case
letters, digits or underscores (a-zA-Z0-9_). Don't use a lone underscore, some things interpret it as a
placeholder.

53 The use of “$zklRoot” notation is informational only, no attempt is made to recursively parse/expand $envVar.
54 Note that if directories [dis]appear after startup, the properties don't change to reflect this.

86 Objects

Objects

What thread-safe and not thread-safe mean

A thread safe method means two or more threads can call that method on that object and all will have to
expected result. If a method is not thread-safe, then only one thread [at a time] can call that method on
that object. Note that methods are bound to objects and it is the underling object that determines thread
safety, not the method per se (two threads calling the same method on two objects is always safe (unless
noted).

Notes on the Pump Method

What pump does: It is basically a stream processor, rolling a value through a fixed set of actions into a
sink. Values from the pump source are fed to the first action and that result is fed to the next action.
Rinse and repeat. The end result is then fed to a sink (which typically aggregates the result into, for
example, a list).
The syntax is:
object.pump(sink [,action ,action …])
The object may have optional parameters before the sink, such as a count:
[0..].pump(count,sink [,action ,action …])
If an object has a pump method, it has the following attributes:

● The sink parameter:
Data A data Data (vs string Data) is the sink. If the word Data is used, a

new sink is created (eg "123".pump(Data)). To append to an
existing Data, use it (eg "123".pump(Data(0,String)) creates
and appends to a string Data, which is returned).

List
ROList

If the name of the sink is List, L, ROList, or T (or anything that
points to one of those Vault objects), the sink is a [empty] ROList.

If the sink is a non-empty ROList, the [new] sink is initialized to
that.

If the sink is a user created List (empty or not), it will be appended
to.

Deferred
Fcn
Method

Pump doesn't aggregate and returns Void.
A good way to aggregate to your object is to use object.write as
the sink: eg [1..9].pump(Console.println,factorial)

Sink Calls sink.write. The sink isn’t closed (unless the Sink requests
that).

String Concatenate the results into a string or append to a string. Use the
word “String” for clarity: T(1,2,3).pump(String) → “123”. A
new string is created.

Void Don't aggregate. The last result is returned.
else If the sink object has a write method, use that method as the sink.

T("testing",1,"two",3).pump(Console) prints
“testing1two3”. This means many other objects can to be used as
sinks (such as Files, Pipes or Sockets).
When done, pump returns the object (which isn’t closed).

If aggregating, the sink is usually returned. Otherwise, the last result (or Void) is returned.

 87

Objects

● The pump action(s) can be anything.
Action Result

None Same as Void. "123".pump(List) → L(“1”,”2”,”3”)

ROList Specifies an action and static parameters. See String for an
example.
Specify a constant: (3).pump(List,T(Void,"")) creates a
list of three empty strings.
If the list is empty, the action is ROList.create.

String Resolve and run: i.string().
T("one").pump(Void,"len") → 3
T("1","two").pump(List,"len",'+(1)) → L(2,4)
T(10).pump(String,T("toString",16),"toUpper") →
“A”. This is the same as
T(10).pump(String,fcn(n)
{ n.toString(16).toUpper() })

If string isn't found, i is ignored.
To pump a string constant, use T(Void,"string").
If the string is “”, the action is String.create.

Void Use the identify function: fcn(i) → I

Void.Filter If v0 is the first value fed to the actions and vn is the value that
reaches Void.Filter, the result is:
fcn(v0,vn){ if(vn) v0 else Void.Skip }
[0..4].pump(List,'-(1),'>(1),Void.Filter,'+(10)) → L(13,14)

Void.Xplode If the result the from previous action is a ROList, the list is
blown apart into separate parameters for the next action. If
Xplode is the last action (or not ROList), it is ignored.
This is nice when you want to pump a Dictionary, the
(key,value) pairs can be transformed when the next action
wants two parameters (eg Dictionary to Dictionary
transformations).

Bool
Number

The number or bool

else The action, such as a function or method

● Special return values (return(v…) is the same as T(v…)):
Return
Value

Meaning

Void.Again return(Void.Again,r) repeats the call to this function with
two parameters: (next,r)

88 Objects

Objects

Void.Drop Used for preambles. When an action returns Void.Drop, the
action is marked as a no-op. The instance returned with Drop
is written to the sink (the default is the passed in parameter).
See the concat and reduce fcns below for usage.
Drop is treated as a Skip.
If you don't want to write to the sink, make the second
parameter Void.Void, as in return(Void.Drop,Void.Void)

Void.Read Read n more items from the source, appending them to the
existing parameter(s), and passing the lot as parameters to
the next action. N is limited to a smallish number (in the
tens).
Usually, this is used as an action by itself, eg
pump(sink,T(Void.Read,1),fcn(a,b){})
If n items can not be read, TheEnd is thrown. Unless the
third parameter is False (T(Void.Read,5,False))).
If the fourth parameter is True
(return(Void.Read,n,x,True)), the action is retried.

Void.Recurse return(Void.Recurse,i [,pump parameters]) calls
i.pump(sink,parameters), reusing the sink.
As this is recursion, there is a depth limit.

Void.Skip return(Void.Skip) causes this action/result, and all
following actions, be ignored.
return(Void.Skip,r) writes r to the sink and skips the rest
of the actions.

Void.Stop return(Void.Stop) stops the pump (equivalent to break).
T(Void.Stop,r) writes r to the sink and stops.

Void.Write return(Void.Write,x,y,z) writes x, y and z to the sink
and skips.
return(Void.Write,Void.Write,T(x,y,z)) writes x, y
and z to the sink and skips.
T(Void.Write) writes the parameter list as a list and skips.
If one of the xyzs is Void.Drop, p is written in it's place
(where p is the [first] parameter passed to this action).

If you wish to use one of the Void signals by itself, you can do so like this:
 T(1,2,3).pump(List,'+(1),Void.Write,'+(1)) → L(2,3,4)
 T(1,2,3,4).pump(List,Void.Read) → L(L(1,2),L(3,4))
 T(1,5,3,7,2).reduce(Void.Write,String,(0).max,0) →”15577”

fcn.pump: This functionality can be written as (0).pump(*,f) or (0).pump(*,f.fp(x)) where f is
something like fcn f(x){…; return(Void.Stop) }.

Flattening a List (ie a.flatten) can be written as
 T(1,T(2,T(3)),4).pump(List,
 fcn(i){ if(T.isType(i)) return(Void.Recurse,i); i })
 → L(1,2,L(3),4)

 89

Objects

If you wanted to flatten all the way down55 this will do:
 T(1,T(2,T(3,T(T(T(4))))),5).pump(List,
 fcn(i){ if(T.isType(i)) return(Void.Recurse,i,self.fcn); i })
 → L(1,2,3,4,5)

Concatenate to string can be written as
fcn concat(src,sepr){
 src.pump(String, Void.Drop,
 T(Void.Write,sepr,Void.Drop));
}
Then
 concat(T(1,12),".") → “1.12”
 concat(Data(0,String,"x","y","z"),"-") → “x-y-z”

A simple reduce can be written as
fcn reduce(src,f){
 args:=L();
 src.pump(Void,'wrap(i){ args.append(i); return(Void.Drop,i); },
 'wrap(i){
 args.append(i) : (r:=f(_.xplode())) : args.clear(_);
 r
 });
}
Then
 reduce(T(1,2,"3"),'+) → 6
 reduce(Data(0,String,"Hello"," ","World"),'+) → “Hello World”

Decoding URL strings: If urlText is "http%3A%2F%2Ffoo.com%2Fbar" then
urlText.pump(String,
 fcn(c){ if(c=="%")return(Void.Read,2); return(Void.Skip,c) },
 fcn(_,b,c){ (b+c).toInt(16).toChar() })
results in "http://foo.com/bar".

Chunking can be done with Read:
 "12345".pump(List,T(Void.Read,2,False),String)
 → L("123","45")
 T(1,2,3,4,5).pump(List,T(Void.Read,2,False))
 → L(L(1,2,3),L(4,5))

Decoding a character stream to UTF-8 characters:
fcn readUTF8c(chr,s=""){ // transform UTF-8 character stream
 s+=chr;
 try{ s.len(8); return(s) }
 catch{ if(s.len()>6) throw(__exception) } // 6 bytes max/UTF-8
 return(Void.Again,s); // call me again with s & next chr
}

s:="-->\u20AC123"; // --> e2,82,ac,31,32,33
s.pump(List,readUTF8c) //--> L("-","-",">","€","1","2","3")
File("foo.txt","rb").howza(3).pump(List,readUTF8c,"print");

55 And the list isn't recursive or cyclic.

90 Objects

http://foo.com/bar

Objects

Mixing metaphors:
println(" x 1 2 3 4 5\n"
 " -------------------");
foreach a in ([1..5]){
 print("%2d|".fmt(a)," - "*(a-1));
 [a..5].pump(String,'*(a),"%3d ".fmt).println();
}

 x 1 2 3 4 5

 1| 1 2 3 4 5
 2| - 4 6 8 10
 3| - - 9 12 15
 4| - - - 16 20
 5| - - - - 25

Notes on the apply and filter methods

These methods apply an action on a stream to produce a result. The action is the same as in pump and
the result is determined by the source object (usually a list). These are special cases of pump.
Apply is pump with a default sink and one action:
src.apply(f [,static parameters])
Each i in obj is passed to f (f(i,static parameters)) and collected in a sink (specified by the src
object, such as an object of the same type or list).

Filter collects those things that make it though the filter (ie action(i).toBool() is True).
The parameters are the same as for apply, with the addition of a list of actions and a list of lists of
actions. This latter case is a conditional and – each filter has to pass and the first that fails causes a skip.
src.filter(action=Void)
The syntax for many actions:
src.filter(T(action, T(action, static parameters)))
If you just want side effects, you can use False as the last action.
See pump ROList action for more information.

Special return values: Only Void.Stop, (Void.Stop,r) and Void.Skip are reconized, all others are
treated as Void.Stop. Use pump if you want to use other specials.
Filter to different sinks: If you want the filtered results collected into your choice of sink (perfering,
for example, a String), use a pump and Void.Filter:
 L(1,"2",3,4.5).filter(Int.isType) → L(1,3)
 L(1,"2",3,4.5).pump(String,Int.isType,Void.Filter) →> "13"
Other Filters:

● filter1: This filter stops on the first “true” value and returns it.
● filter1n: As above but returns the index (in the source) of the first “true” value.
● filter22: The “true” value go in one list and the false value are collected in anther list.
● FilterNs: As in filter1n, but returns the indexes of all “true” values.

Notes on the reduce method

Reduce the stream to a single value or calculate a value from the contents of a stream. Another form of a
feedback loop.

 91

Objects

The syntax is src.reduce(action [,initialValue [,staticParameters]])
or src.reduce(Void.Write,sink,action,…) // aka scanl
Reduce is equivalent to:
 p:=initialValue;
 foreach i in (src)
 { p=action(p,i,static parameters) }
"".reduce(f) → Void
"".reduce(f,i) → i
"x".reduce(f) → “x”
"x".reduce(f,i) → f(i,"x")
Special return values: Only Void.Stop, (Void.Stop,r), Void.Skip and (Void.Skip,r) are
reconized, all others are treated as Void.Stop.

92 Objects

Objects

Atomic

Objects: Atomic.Bool, Atomic.Int, Atomic.Lock, Atomic.WriteLock
Inherits from: Object
See Also: Keywords.critical, Objects.Class.launch, Objects.Fcn.launch, Objects.Thread

Programs that generate atomic power! Just think, they could heat our homes, power space ships.
The possibilities are endless.
-- Zander Kale, not quite grasping the concept

Abstract
The Atomic Object is a container for several threading Objects and constructs that are useful for course
grained concurrent (multi-threaded) programming.

Methods
● Bool(initialValue=False): Create an instance of a Atomic Bool object.

See Atomic.Bool.
● Int(initialValue=0): Create an instance of a Atomic Int object.

See Atomic.Int.
● Lock(): Create an instance of a Atomic Lock object.

See Atomic.Lock.
● WriteLock(): Create an instance of a Atomic WriteLock object.

See Atomic.WriteLock.

● setAndWait(Atomic.Bool,timeout/seconds=True [,i...]): Set a bool and wait for a
write/change event on one or more of the objects. The following two lines are equivalent:
 ab.set(); Atomic.wait(10,c);
 Atomic.setAndWait(ab,10,c);
except that the latter is atomic: The waiting starts before the bool is set; thus any changes to the
objects after the bool is set won't be missed.
This is useful for testing threads and avoiding sleeps:
 b:=Atomic.Bool(); lock:=Atomic.Lock();
 fcn(b,lock){b.wait(); lock.acquire();}.launch(b,lock);
 Atomic.setAndWait(b,10,lock);
This waits for a thread to acquire a lock. If a set/wait combination were used, there is a race
between the set and when the wait starts that could miss the acquire.
lockAtomic.setAndWait(b,True,b) works, Atomic.setAndWait(b,True) sleeps after setting
b as does Atomic.setAndWait(b).
See also: Atomic.wait
Interruptible: Yes
Throws: No
Returns: Void or list of objects have changed.

● sleep(timeout/seconds=True): Sleep for a while or until interrupted. Seconds is an integer or
real value, resolved to (typically) a millisecond value.

 93

Objects

Timeout Blocks
True or Void Forever
False or 0 Don’t block, either works immediately or fails
n (Int or Float) Max seconds to wait for success (0 is the same as False)

Returns: True if slept for the duration, False if interrupted (not that you could tell, it was an
exception that did the interrupting).
Interruptible: Yes

● wait(timeout/seconds=True): The same as sleep.
● wait(timeout/seconds,i...): Wait for a write/change event on one or more of the objects.

The objects can include Atomic Ints, Atomic Bools, Pipes, Straws and VMs. If an object doesn't
support asynchronous events, it is ignored.
If a write happens before the wait starts, it will be missed.
Note: This an asynchronous method that doesn't consume CPU cycles.
To wait for a thread to die or for a write or close on a Pipe, you could use
 Atomic.wait(True,threadVM,pipe);
See also: Atomic.setAndWait
Interruptible: Yes
Throws: No
Returns: Void or list of objects that have changed.

● waitFor(Fcn|Method|Property, timeout/seconds=True,throw=False): Wait for
something to happen.
To wait for five items to show up in a Pipe, you could use:
 Atomic.waitFor(fcn(len){ len()>=5 }.fp(pipe.len));
We need to use >= in case more than five items get in the pipe before we notice.
Note: This is a polling method and uses CPU cycles and can miss quickly changing events.
Interruptible: Yes
Throws: TypeError

 ValueError if timeout can't be converted to a Float
 Timeout if throw is True

Returns: True if event waiting for happened, False if timed out or interrupted

Properties: None
Operators: None

Discussion
When more than one thread can change a chunk of data at the same time, some mechanism must be
provided to “serialize” those changes such that one change is completed before another is attempted or
data corruption is guaranteed. Some languages do that for the programmer but zkl only does that for
objects that are expected to be used in threads56 or it is forced to57. The programmer is required to know
when their program will share data amongst threads and take care to protect it. The constructs in this
class are “atomic”, that is, they are guaranteed to allow only one thread at time to access them. Attempts
to use them while they are in use will cause a wait or access denial. Other constructs facilitate inter-
thread communication. And, importantly, since they are low level (or primitive), they provide a basis on
which to build higher level constructs.

56 For example Thread.Pipe.
57 The VM requires certain types of objects to be thread safe, List and Dictionary being two.

94 Atomic

Objects

WaitFor is a very powerful construct that allows one thread to basically sleep while waiting for another
thread to do something. The calling thread waits until that something happens, it waits longer than it
should or another thread throws an exception at it. Waitfor can wait for more than one something but
that requires more work than just listing them. On the other hand, waiting for some things is very
simple.

Simple Waits: Events

Let’s say e is an Atomic.Bool. To wait for another thread to set it, all you have to do is e.wait(); This
will cause the current thread to wait until e is set (which might never happen). Here is an example
program:
 var e=Atomic.Bool();
 // start a thread that sleeps for 10 seconds, then sets e
 fcn sleeper{ Atomic.sleep(10); e.set(); }.launch();
 println("Waiting …");
 s:=e.wait(); // wait until the thread sets e
 println("done: ",s);
This program is a complex way to wait for ten seconds58. A thread is created that just sleeps for ten
seconds and then sets e. The main thread then waits for e to be set and stops. Here is the output when the
program is run:
 Waiting …
 <ten seconds>
 done: True
Now, suppose you don’t want to wait ten seconds. Five should be plenty, you have better things to do
than to wait (which you could be doing, instead of waiting, but that is another story). One small change:
 s:=e.wait(5);
Now, when the program is run:
 Waiting …
 <five seconds>
 done: False

We’ll ignore exceptions here, but it is possible (and easy) for another thread to throw an exception at us
and interrupt the wait.

Waiting for a Method

The other type of waiting is waiting for something to return True (or evaluates to True). That something
can be any object method but, if it is not a Atomic method, be very careful that you won’t be calling the
method while another thread is changing something. Thus, the above program can be written as:
 var e=Atomic.Bool();
 // start a thread that sleeps for 10 seconds, then sets e
 fcn sleeper{ Atomic.sleep(10); e.set(); }.launch();
 println("Waiting …");
 s:=Atomic.waitFor(e.isSet); // wait until the thread sets e
 println("done: ",s);
The only change is in bold; the program works similar to the previous one, the difference is that it polls
(ie loops) and thus uses CPU cycles. It can also miss events if they occur in rapid succession.

58 Or use a thread future: s:=sleeper.future().noop();

 95

Objects

Waiting for a Function

Waiting for a function to return True allows you to wait for lots of different things. For example, to wait
for integer to count up to five:
 var n=Atomic.Int();

// start a thread that counts forever
 fcn{ while (1){ Atomic.sleep(1); n.inc(); }}.launch();
 println("Waiting …");
 s:=Atomic.waitFor(fcn{n>=5}); // wait for n to reach 5
 println("done: ",s);
Again, as before:
 Waiting …
 <five seconds>
 done: True
Note: the counting thread never ends, it just keeps counting.
What ensures that this works is that Atomic Ints are atomic. In this case, that means inc() won’t allow
anybody else access to the value until it has changed and when it retrieves the value, nobody else is
modifying it. Thus, while one thread is reading n, the other can be trying to increment it but can’t until
the first thread has read the value. And vice versa.
Note that we check to see if n is greater than or equal to 5 because it is possible for the counting thread
to increment n twice between checks. It is also the thread could start and move past 5 before the wait
starts.
A much better way to write this example is to use Atomic.Int.setAndWaitFor:
 var n=Atomic.Int(), b=Atomic.Bool();

// start a thread that counts forever
 fcn{ b.wait(); while (1){ n.inc(); }}.launch();
 println("Waiting …");
 s:=n.setAndWaitFor(b,5); // wait for n to reach 5
 println("done: ",s);

Waiting for Multiple Objects

If you need to wait on multiple objects or functions, you can put then into a list and use the runNFilter
method in waitFor.
 b =Atomic.Bool();
 f:=fcn{ return(etCallHome()==ANSWER); }
 list:=T(b.isSet,f);
 // return when b is True or somebody answers the phone
 Atomic.waitFor(list.runNFilter);
The above example, while more expressive, is also more wasteful of system resources (and can miss
rapidly changing events). This rewrite won't miss events (assuming the events happen after the wait
begins) and is efficient.
 b:=Atomic.Bool();
 p =Thread.Pipe();
 // return if b is set or the pipe is written to or closed
 Atomic.wait(True,b,p); // or use Atomic.setAndWaitFor()

Atomic.Bool

Inherits from: Object

96 Atomic.Bool

Objects

Abstract
Atomic Bools are Bools that change state atomically.
Bools also can also act like events and are used by threads to signal other threads that something has
happened.

Create this object with Atomic.Bool() or by calling the create method on an existing AtomicBool.

Methods (All methods are atomic and thread safe)
● clear(): Set the current value to False.

Returns: Bool (previous value)
● create(value=False): Create a new AtomicBool instance. Value is used for the initial value.

Returns: AtomicBool
● isSet(): Returns value.

Returns: Bool
● set(): Sets the current value to True.
● set(b): Sets the current value to b.

Returns: Bool (previous value)
● setIf(newValue,expectedValue): Sets value to newValue if value is equal to expectedValue.

● If value is equal to expectedValue, value is set to newValue and True is returned.
● If value is not equal to expectedValue, value is unchanged and False is returned.

Returns: Bool
● setAndWaitFor(atomicBool,v=True,timeout=True,throw=False): Sets atomicBool to True

and waits for self to be set to v.
Timeout is seconds, True (to block), False is the same as 0 (see wait).
Throws: Error if timeout can't be converted to a Float

 Timeout if throw is True
Returns: Bool

● toBool(): Returns value. This is the same as isSet().
Returns: Bool

● toString(): Returns “AtomicBool(value)”.
Returns: String

● tryToSet(): Sets value to True if False. Equivalent to setIf(True,False).
If the current value is True, returns False.
If the current value is False, set value to True and returns True.
Note: If two or more threads are calling this at the same time (and value is False), only one will
see True; value will be set to True in all cases.
Returns: True if signaled, False if timed out.

● wait(timeout/seconds=True, throw=False): Wait for the self to be signaled (ie become set,
which it might already be). If no timeout, wait will block forever waiting to be signaled or until
interrupted (by an exception thrown by another thread).
Timeout is in seconds and can have the following values:

Timeout Block
True Forever
False Don’t block, either works immediately or fails
n (Int or Float) Max seconds to wait for success (0 is the same as False)

 97

Objects

If wait catches an exception, that exception will interrupt wait, and the exception will be
processed in the normal way.
wait(0) is the same as isSet().
Note: This is an asynchronous wait, one that waits for writes to self.
Throws: Error if timeout can't be converted to a Float

 Timeout if throw is True
Returns: True if signaled, False if timed out.

● waitFor(b=Bool/1/0,timeout/seconds=True, throw=False): Wait for value to be set to b
(which it might already be). If no timeout, wait will block forever waiting to be signaled or
interrupted (by an exception thrown from another thread).
If wait catches an exception, that exception will interrupt the wait, and the exception will be
processed in the normal way.
Note: This is an asynchronous wait, one that waits for writes to self.
Throws: ValueError if timeout can't be converted to a Float

 Timeout if throw is True
Returns: True if signaled, False if timed out.

Properties (All properties are atomic and thread safe)
● value: Returns isSet().

Returns: Bool

Operators: None

Discussion

Events

An event (aka Atomic.Bool) just sits around waiting for somebody to kick it. An example would be
waiting for the dinner bell to ring: there are a lot of people waiting for that bell but only one person who
can ring it. When it does ring, suddenly there is a lot of action by a lot of people who may have not been
doing much until now. The bell is the event, the cook is the thread who calls event.set() and the
hungry people are the threads who called event.wait(). A thread that calls event.isSet() is
equivalent to somebody who is doing work, and every now and then, calls out to see if dinner is ready
yet. You could also think of a beacon that lights up when event.set() is called and turns off when
event.clear()is called. During that time, anybody who looks will see the beacon if it is turned on.

Atomic.Int

Inherits from: Object

Abstract
Atomic Ints are integers that change state atomically.
On Windows, these are 32 bit integers.

Create this object with Atomic.Int() or by calling the create method on an existing AtomicInt.

98 Atomic.Int

Objects

Methods (All methods are atomic and thread safe)
● create(value=0): Create a new AtomicInt instance. Value is used for the initial value.

Returns: AtomicInt
● dec(): Atomically decrement value.

Returns: value-1 (Int)
● inc(): Atomically increment value.

Returns: value+1 (Int)
● isSet(): Returns True if value is non-zero.
● isSet(n): Returns True if value is equal to n.

Returns: Bool
● set(n): Atomically sets the current value to n and returns the previous value.

For example: n:=Atomic.Int(1); x:=n.set(2);
The value of n is 2 and x is 1.
Returns: Previous value (Int)

● setAndWaitFor(Atomic.Bool,n,timeout/seconds=True,throw=False): Set a bool and wait
for self to be set to n. The following two lines are equivalent:
 ab.set(); an.WaitFor(n,10);
 Atomic.setAndWait(b,n,10);
except that the latter is atomic: The waiting starts before the bool is set; thus any writes to self
after the bool is set won't be missed.
Interruptible: Yes
Throws: Error if timeout can't be converted to a Float

 Timeout if throw is True
Returns: Bool

● setIf(newValue,expectedValue): Sets value to newValue if value is equal to expectedValue.
● If value is equal to expectedValue, value is set to newValue and True is returned.
● If value is not equal to expectedValue, value is unchanged and False is returned.

Returns: Bool
● toBool(): Returns True if value is non-zero. This is the same as isSet().

Returns: Bool
● toInt(): Returns the current value.

Returns: Int
● toString(): Returns “AtomicInt(value)”.

Returns: String
● waitFor(n,timeout/seconds=True,throw=False): Wait for value to be set to n (which it

might already be). If no timeout, wait will block forever waiting to be signaled or until
interrupted (by an exception thrown from another thread).
Timeout is in seconds and can have the following values:

Timeout Block
True Forever
False Don’t block, either works immediately or fails
n (Int or Float) Max seconds to wait for success (0 is the same as False)

If waitFor catches an exception, that exception will interrupt the wait, and the exception will be
processed in the normal way.

 99

Objects

One common use for this method is waiting for threads to exit:
 var N=Atomic.Int();
 do(10){ N.inc(); thread.launch(); }
 fcn thread{ N.dec(); } // decrement N and exit
 N.waitFor(0); // wait for threads to start and finish
Note: This is an asynchronous wait, one that waits for writes to self. If you start waiting after self
has passed the target value, you will not catch it. If self reaches and stays at the target value (as
in the example), or is set to the target after the wait starts, you will never miss it.
See also: setAndWaitFor
Throws: Error if timeout can't be converted to a Float

 Timeout if throw is True
Returns: True if signaled, False if timed out.

Properties (All properties are atomic and thread safe)
● value: Returns value.

Returns: Int

Operators (All operators are atomic and thread safe)
Note that if two Atomic Ints are compared, the comparison is not atomic, it is equivalent to
(a1.value op a2.value). Thus in n:=Atomic.int(5), (n==n) can be False if other threads are modifying
n59

● ==, != : The operand has to be an Int, Float or AtomicInt.
● <, <=, >, >= : The operand is as above or something that supports toInt.

Discussion
An atomic integers is an integer that can shared amongst many threads, and those threads can all be
trying to change it at the same time. This puts constraints on what an int can do because any operation
has to be atomic, that is, any one action has to complete before another one can start. These integers are
targeted at a narrow class of threaded programs (as should be obvious by noting the lack of many
common integer operators).

Atomic.Lock

Inherits from: Object
See Also: Keywords.critical

Abstract
Also known as a mutex.

Create this object with Atomic.Lock() or by calling the create method on an existing Lock.

Methods (All methods are atomic and thread safe)
● acquire(timeout/seconds=True): Grab ownership of the lock, if it is available. With no

timeout, acquire will block until it gets the lock, possibly forever, or until interrupted (by an
exception thrown from another thread).

59 var N=Atomic.Int(5); fcn{while(1){N.inc();N.dec();}}.launch()
 while(1){if (N!=N) println("Bingo ")}

100 Atomic.Lock

Objects

Timeout is in seconds and can have the following values:
Timeout Block
True Forever
False Don’t block, either works immediately or fails
n (Int or Float) Max seconds to wait for success (0 is the same as False)

Returns: True if lock acquired, False if timed out.
● create(): Create a new Lock instance. The lock is created unlocked.

Returns: Lock
● release(): Unconditionally release the lock. Any thread waiting for the lock can then acquire it,

and it is unknown which thread that will be (if there is more than one thread waiting). Any thread
can release the lock.
Returns: self

Properties (All properties are atomic and thread safe)
● isLocked: The current value of the object: True if locked, False if not.
● value: Same as isLocked.

Operators: None

Warning: If a thread acquires a lock and then attempts to acquire it again, it will dead lock (or until
acquire times out). You might run into this inadvertently via recursion.

Discussion
A Lock is an object that has two states: locked or unlocked and the transition between those states is
atomic, that is, effectively instantaneous. A lock is only useful in threaded applications; in a single
threaded application, its functionality is identical to that of a Bool. Unlike locks in other languages and
operating systems, nobody “owns” a lock, that is, you can’t restrict access to a lock other than by hiding
it; if another thread can find it, it can acquire or, more critically, release it.

Atomic.WriteLock

Inherits from: Object

Abstract
A WriteLock is used to control access to a “read mostly” resource – one that has many readers but not
many writers. Only one writer at a time may access the resource at a time but an unlimited number of
readers can read from the resource at the same time.

Create this object with Atomic.WriteLock() or by calling the create method on an existing
WriteLock.

Methods (All methods are atomic and thread safe)
● create(): Create a new WriteLock instance. The lock is created unlocked.

Returns: WriteLock

 101

Objects

● acquireForReading(timeout/seconds=True): Called when a reader wants access to the
protected resource.
Cases:

● Access is granted if there are no writers; the number of readers is irrelevant.
● If the lock is held by a writer, access is blocked until the writer releases the lock.
● If the lock is held by a writer, and it is being contested by another writer and a reader, it is

unknown which will acquire the lock when it is released.
● If the lock is held by a reader and a writer is waiting to acquire the lock, the writer will

get the lock before any more readers can.
Without a timeout, acquire will block, possibly forever, until it gets the lock or until interrupted
(by an exception thrown from another thread).
Timeout is in seconds and can have the following values:

Timeout Block
True Forever
False Don’t block, either works immediately or fails
n (Int or Float) Max seconds to wait for success (0 is the same as False)

Returns: True if lock acquired, False if timed out.
● acquireForWriting(timeout/seconds=True): Called when a writer wants access to the

protected resource (so it can change it).
Cases:

● Access is granted if there are no readers and no writers. Otherwise, access is blocked
until nobody is accessing the resource.

● While a writer is waiting to acquire a WriteLock, readers are blocked and
acquireForWriting will succeed before acquireForReading.

● If a writer holds the lock and both readers and writers are waiting to acquire the lock, it is
unknown if a reader or write will get the lock after this writer releases it.

Without a timeout, acquire will block forever waiting for the lock or until interrupted (by an
exception thrown from another thread).
Returns: True if lock acquired, False if timed out.

● isSet(): Returns True if a writer has the lock, otherwise False, irregardless of the number of
readers. If True, the number of readers is zero (since there can be no readers while writing).
Note: Even if True, it doesn’t mean the writer can actually write, the writer may be waiting for
the number of readers to drop to zero (and is still stuck in acquireForWriting).
Returns: Bool

● readerRelease(): Decrement the number of readers accessing the resource. When the number
of readers is zero, a writer may acquire the lock. If more than one writer wants the lock, the
writer that asked first gets the lock.
Any thread can release the lock.
The reader count will not drop below zero.
Returns: self

● writerRelease(): Called when the current writer has finished changing the resource. The lock
can now be acquired by one or more readers or a writer. If more than one writer wants the lock,
which one gets it is undefined. If both readers and writers want the lock, all you know is
somebody will get it but not who.
Any thread can release the lock.
Returns: self

102 Atomic.WriteLock

Objects

Properties (All properties are atomic and thread safe)
● value: Returns isSet().
● readers: Returns the number of readers.

Operators: None

Notes
● Readers can’t starve writers but writers can starve readers.
● If you want to use critical with a write lock, you'll need to tell it which methods to use:

 var wlock=Atomic.WriteLock();
 critical(wlock,acquireForReading,readerRelease){
 doStuff();
 }
If doStuff causes an exception, throws an exception, returns, whatever, the lock will still be
released.

Warnings:
● If a thread acquires a write lock and then attempts to acquire it again, it will dead lock (or until

acquire times out or is interrupted).
● The lock makes no attempt to keep track of who is a reader, writer or the order in which they

acquire and release the lock. It is up the application(s) readers and writers to acquire and release
the lock in order (ie acquire the lock, access the resource, release the lock). So, don’t write
sloppy code, minimize the amount of code in a lock and protect against exceptions (especially if
you don’t expect them; use critical).

Discussion
WriteLocks are used to control access to resources. This is only a concern in multi-threaded
applications, in a single threaded application, there will never be more than one thread accessing a
resource and, thus, no contention. WriteLocks are useful when the resource is a “read mostly” resource;
one that is read a lot more than it is changed. One example would be a phone book: Lots of people look
up phone numbers, sometimes at the same time, but the book is rarely changed. However, when it is
changing, the last thing the writer needs is someone looking over their shoulder and trying to read a
number while it is changing. A WriteLock allows, at most, one writer at a time access to a resource and
when there are no writers, an unlimited number of readers can access the resource.

 103

Objects

Example: lock=Atomic.WriteLock();

Thread One (writer)

lock.acquireForWriting();
 resource.change();
lock.writerRelease();

When this thread has the lock, Two and Three are
blocked.

If Two or Three (or both) are reading, One blocks
until neither Two nor Three are reading. While One is
blocked, neither Two nor Three can start reading.

Thread Two (reader) Thread Three (reader)

lock.acquireForReading();
 x=resource.read(4);
lock.readerRelease();

If One is writing, Two is blocked.

If Three is reading, Two can also
read.

If Two is reading and Three isn’t,
AND One wants to write, Three
can’t start reading.

lock.acquireForReading();
 x=resource.readLog();
lock.readerRelease();

If this thread is reading, One can’t
write but Two can also read.

If Three is blocked because Two is
reading and One is also blocked,
when Two releases the lock, One
will get it and Three remains
blocked until One is finished.

Resource

104 Atomic.WriteLock

Objects

Bool

Syntax: True, False
Full name: [TheVault.]Bool
Inherits from: Object

Abstract
The Bool object is the Boolean object and there are two of them: True and False. They are usually used
to indicate the success or failure of something.

Examples:
● x=True;
● x=(1==2); // same as x=False;
● return(True);
● (1).toBool(); self.toBool(); (Void).toBool()

Methods
● create(): Returns self. Eg True(False) → True. This is useful if you need a callable that

always returns True or False.
● toBool(): Returns self.
● toString(): Returns “True” or “False”.
● toInt(): If True, returns 1, otherwise returns 0.
● toFloat(): If True, returns 1.0, otherwise returns 0.0.

Properties: None

Operators
● eq (==) : True if both operands are Bools and have the same value.
● ne (!=) : True if either operand is not a Bool or the values differ.
● negate (not) : Inverts value, ie True becomes False and vice versa.
● +, -, * : Behaves like Int, True = 1 and False = 0.

(True + 2) → True but (2 + True) → 3

Discussion

True and False

True and False are reserved words that return their respective Bool values.

 105

Objects

Class

Inherits from: Object
See also: Keywords.class

Abstract
The Class object is the base class for all classes (that is, all classes inherit from Class). Classes are
typically defined by programs using the “class” keyword, they can also be created “on the fly” (the
compiler and the VM do this).

Methods
● BaseClass(name):

Look for name in self, ignoring everything but methods and properties.
Note: The BaseClass methods resolve, toBool and toString are different from Class methods
listed here; they have minimal Object level functionality.
See Also: Objects.Object.BaseClass.
Throws: NotFoundError
Returns: Object

● copy(copyVars=False): Returns a new class instance based on self. Topdog is the new class, all
vars are set to Void and container is self.container.
If copyVars is True, the [new] vars are references to the original ones.
Notes:

● NullClass.copy() always returns NullClass, no copy is made.
● If a class is static, no copy is made, the class is returned.
● The constructor is not run.

Returns: Class
● create([parameters]): This is the same as self(parameters).

The algorithm to create the new instance of self is:
● newInstance = self.copy() (equals self if self is static)
● init = newInstance.fcns[self.theInitFcnIs] (init or __constructor)
● init(vm.pasteArgs()) (use parameters. Or not)

If self isn't static, init calls the constructor (first), otherwise, it doesn't.
● or: self.copy().fcns[self.theInitFcnIs](vm.pasteArgs())

Returns: New instance of self (Class) (unless init does a returnClass())
● defer([parameters]): Returns Deferred(self,parameters). For example,

Date:=Import.defer("Time.Date") postpones importation until Date is used
(Date.prettyDay() will import and call prettyDay).
Returns: Deferred

● isChildOf(class): Returns True if self is class, is an instance of class or has inherited from
class. Thus, self is a child of itself.
 self.isChildOf(1)→ False
Returns: Bool

● isInstanceOf(class [,class …]): True if self is an instance of class. Self is an instance of
itself.
If Ci is an instance of class C or an instance of C (C()) then

● A.isInstanceOf(C) is True iff: A == Ci or A == Ci()

106 Class

Objects

Note that Ci can be any class instance that was created from C or any instance of C.
● Given B(A) (class B inherits from class A), then:

A.isInstanceOf(A) → True
A.isInstanceOf(B) → False
B.isInstanceOf(A) → False

isInstanceOf differs from Object.isType only for classes and functions.
self.isInstanceOf(1) → False
If there more than one parameter, True is returned if self is an instance of any of them.
Returns: Bool

● launch(parameters): Create a thread and, when the thread starts, that thread calls
liftoff(parameters passed to lauch). Liftoff is a [required] user defined function that is
called when the thread starts running.
Note: There is no way [for the caller of launch] to know when the thread starts running.
Normally, this is not a problem, but if you need to know, use a Thread.Pipe (to send a message)
or set a Atomic.Bool in liftoff and wait for it in the launching function. Or you could set (in
liftoff) a class variable to vm (which is the running thread) and watch that. Just waiting a short
amount of time will work until your system is heavily loaded or you move the code to a different
system.
The splashdown [is a optional] function is called when a threads ends. Its parameters are (False,
exception) or (True, Void) where exception is the exception that killed the thread.
Note: A new instance of the class is NOT created.
Template:
 class C{ fcn liftoff(x){ println(x) }
 fcn splashdown(b,e){}
 }
 C().launch(5); // print 5→
See also: Keywords.class for more on threads, Objects.Fcn.launch.
Throws: TypeError
Returns: self

● nthClass(n): A Class can contain other classes. This method implements self.classes[n].
Note that if you are creating (compiling) a class, the class you KNOW is supposed to be there
may not have been created yet.
Throws: IndexError
Returns: Class

● Property(name): Search self for a variable or property and return a Property instance for it. The
class variables are searched first (parents are NOT searched), then the properties are searched.
For example:
 class C{ var v=123; }
 p:=C.Property("v");
 p(); → 123
See Also: Objects.Object.Property
Throws: NotFoundError
Returns: Property

● resolve(name): Search self for an object named name looking at:
● Class (instance) variables

 107

Objects

● Functions: The following are ignored: The constructor (whatever its name is), functions
whose names contain “#”60 and nullFcns. If you name your constructor “__constructor”,
you won't notice because the __constructor property will provide the match.

● Classes: The following are ignored: classes whose names contain “#”61 and NullClass.
● Parents

The above four are searched up through the parent classes, breadth first. If no match, then look in
self for:

● Methods
● Properties

Resolve is called by the VM (at runtime) when there is an unknown name being referenced in
self. This happens when the compiler couldn't find the name during compilation (common in
typeless systems when referencing through variables and functions). If still not found, the
function __notFound(name) is called (if it exists). If that function returns Void.Void, resolve
carries on to the parents. Note that __notFound is only used for this instance of the resolve
method.

BaseClass.resolve is a different resolve method. It ignores everything above the class object;
it will only examine methods and properties while ignoring variables, functions, parents, etc.

For more information, see Data Reference Resolution in Appendix A (Grammar).
Throws: NotFoundError, TypeError, IndexError
Returns: Object

● resolve(name,False|Void): Parent classes are searched.
● False: Same as resolve(name).
● Void. Same as BaseClass.resolve(name).

Throws: NotFoundError
Returns: Object

● resolve(name,N|*,searchParents=True): This variant checks for the existence of a variable,
function, class, parent, method or property named name. It can also be used to directly access the
Class object.

● N == 1: Check to see if name is a method. Result is MethodType (Int).
● N == 2: Check to see if name is a property. Result is PropertyType (Int).
● N == 4: Check for variable, function, class or parent. Result is True if found.
● N == 8: Check for variable (as above).
● N == 0x10: Check for parent (as above).
● N == 0x20: Check for function (as above).
● N == 0x40: Check for class (as above).
● *: All of the above. You can also bit-or (ie just add up) any of these; to check for a

function or variable: N = 0x20 + 8 = 0x28 (40).
● If searchParents is False/0 the search is confined to self and the parent classes are

ignored. If True/1, all parents are checked.
● MethodType and PropertyType are defined in vm.h.zkl (they are nonzero). Constants for

N can be found in zkl.h.zkl.

60 Anonymous functions (fcn{ }) are given names such as __fcn#1_line#, the compiler also creates anonymous
functions.

61 These are typically anonymous classes; for example __class#1_line#

108 Class

Objects

Notes:
● The match order is undefined, if resolving more than one type and there are multiple

matches, you will get one of them. Except methods and properties are searched last.
See Also: whatIsThis, Objects.Object.resolve, zkl.h.zkl for symbolic names.
Returns: Bool, non-zero Int

● resolve(name,N,Void): This variant returns the index of a variable, function, class, or parent
Parents are not searched.

● N == 8: Check for variable.
● N == 0x10: Check for parent.
● N == 0x20: Check for function.
● N == 0x40: Check for class.
● If N is not one, and exactly one, of these values, Void is returned.

For example, class C { var b,a; }; C.resolve("a",8,Void) → 0 and
C.resolve("b",8,Void) → 1 (variables are sorted).
See Also: whatIsThis, Objects.Object.resolve, zkl.h.zkl for symbolic names.
Throws: ValueError.
Returns: Int or Void (name not found).

● setVar(name[,object]): Set variable name to object. If name doesn't exist, NotFoundError is
thrown. Parents are searched. If object is omitted, the current value of the variable is returned.

● setVar(n[,object]): Set the nth variable to object. Parents are NOT searched. If n is out of
range, IndexError is thrown.
Throws: IndexError, NotFoundError, AssertionError (var is read only)
Returns: Current value of variable

● __sGet(i): Calls function “__sGet” if it exists, otherwise calls Object.__sGet.
self[i] gets translated into self.__sGet(i).
More generally, self[parameters] is translated into __sGet(parameters).
Throws: NotImplementedError if self doesn't implement __sGet.
Returns: This should return self[i], whatever that is

● __sSet(v,i,len): Calls function “__sSet” if it exists, otherwise calls Object.__sSet.
self[i] =x is translated into self.__sSet(x,i).
self[i,n]=x is translated into self.__sSet(x,i,n).
More generally: self[parameters]=x is translated into __sSet(x,parameters).
Throws: NotImplementedError if self doesn't implement __sSet.
Returns: This should return v. This lets x=self[0]=123 work as expected.

● toBool(): This method can be shadowed by the toBool function.
Throws: ValueError if function toBool doesn't return a Bool. Note that this check doesn't happen
if you call toBool directly (ClassC.toBool()) but is when used in a expression: True==ClassC
You can bypass this with: self.BaseClass.toBool() (which returns True).
Returns: Bool. If not a function, True.

● toString(): By default, returns “Class(name)”.
The toString method can be overwritten by a class function named toString.
Warning: Be careful of when overwriting toString. For example, calling println(self) inside
of toString is infinite recursion (you probably mean println(self.name)).
You can bypass this with: self.BaseClass.toString().
Throws: TypeError (if function toString doesn't return a String). Note that this check doesn't
happen if you call toString directly, only when toString is called by the VM.

 109

Objects

Returns: String
● whatIsThis(name,searchParents=True,fullDisclosure=False): Search self for something

named name and return information about it. Somewhat like resolve.
Returns: List(type,container,index,object) or List(Void,Void,Void,Void)

● Type is ClassType (2), FcnType (3), ParentType (112) or ClassVarType (103).
● Container is the class that contains the found object.
● Index is the slot the object is in. For example, if f is a function in class C with index 3,

then C.fcns[3] is f.
● Note: If fullDisclosure is False, vars are Void and functions usually have the wrong

container (they are otherwise correct however).
If True, index is Void.

See also: vm.h.zkl
● unasm(outputStream=Console):

Unassemble the class – dump the machine code. This is the equivalent to
return(Compiler.Asm.disClass(self,outputStream))
You can send the output to a
 File: self.unasm(File("foo.txt","w"))
 Data: self.unasm(d=Data()); // d.text → the output
 List: list:=self.unasm(L())
Returns: Result of calling Asm.disClass (outputStream)

Methods for class creation (used by compilers and loaders)
● embryo(names, numFcns, numClasses, listOfParents [,varBits] [,attributes]):

Create an “embryonic” class. It is an empty class that is ready to be populated with variables,
classes and functions.

Parameter Value
names A list containing, in order: the name of the class

(className), the vault path (vaultPath) and the names of
all the class (instance) variables (varNames). The number
of variables in the class is determined from the size of this
list.

names
className

Name of the class. Eg “ClassC”. There are no checks on
name, you can create an otherwise illegal name. The
compiler uses this fact to create names like “RootClass#”.

names
vaultPath

Where in the Vault this class would like to go, if it were to
go there. The usual case is to set this to “”, unless this class
is destined for bigger and better things62. Import and
TheVault.add will look at this value if told to put the class
into the Vault. Can be overridden but not overwritten.

names
varNames

A list of the names of the instance variables, sorted (use
List.sort). When resolve is looking for a variable value, it
uses this list.
All variables are initialized to Void.

62 The compiler uses the value of AKA to set this.

110 Class

Objects

Parameter Value
numFcns The number of functions that this class will contain. This

number is constant and can’t be changed later.
Function 0 is always the constructor, if there are one or
more functions.
Functions are initialized to nullFcn (which is a fine
constructor).
See addFcn.

numClasses The number of classes that this class will contain. This
number is constant and can’t be changed later.
Classes are initialized to NullClass.
See addClass.

listOfParents The parents that this class has (inherits from).
Use List (L) or ROList (T) if no parents.

varBits See the varBits property. Trailing empty strings (“”) don't
need to be in the list. For example, if the bits are “0010”
and “”, you can use L(“0010”,“”) or L(“0010”).
If you need a placeholder, use ROList (T). Bits default to
0.

attributes A string of space separated class attributes. See the
attributes property.

Note on parents: Parents must be added in inheritance (search) order. The topdog of the parent is
set to self (if P isn't static). Note that if self becomes a parent, all of self's parents topdogs are
effectively changed to the new topdog. To illustrate:
 class A{} class B(A){} // B.A.topdog is B
 class C(B){} // C.B.A.topdog is now C, not B
It is an error to add a class that has the noChildren attribute set.
P must have all of its contained classes and parents added but does not need to be cooked.
P can't already be a parent.
Self can't be a copy of a class.
Warning: It is entirely too easy to create a malformed class. The VM will check as you build the
class but can't verify many things. Embryos are for the “advanced” student.
Throws: AssertionError, TypeError, ValueError
Returns: Class

● addClass(C): Not thread safe. Append a contained class to the classes in self. C.container is set
to self (if C isn't static). Contained classes are those that are created inside another class:
 class C{ class Contained_in_C{} }
Order is important, be sure you have it synchronized with the functions (as they can reference a
class by position rather than name).
Self can't be a copy of a class.
C must have all its classes and parents added.
C can't be a member of another class, it must be an embryo or a static class.
C should not be NullClass (as it will be ignored).
Throws: AssertionError
Returns: C (Class)

● addFcn(function): Not thread safe. Add a function to an embryo, placing it after the previously
added function (the first added function gets slot zero). The constructor must be the first function

 111

Objects

added. Add the rest of the functions in the order as determined by your code. Once a function has
been added, it can't be changed. Functions are bound to their class instance when they are added
to the class.
Notes:

● There is no requirement that the first function be named “__constructor”. It is a
convention; the name of self.fcns[0]. On the other hand, this convention is codified by the
“__constructor” property. Thus, you can name your constructors “cranberrySauce” and
code that calls YourClass.__constructor() will still work.

● If your constructor doesn't do anything (and you need a placeholder), use
self.fcn.nullFcn.

● If you have an “init” function, it does need to be named “init”. When addFcn sees a
function with this name, it sets the theInitFcnIs property.

Throws: AssertionError
Returns: function (Fcn)

● addFcn(function,n): Not thread safe. Set the nth function in a class to function. Use this if you
are not going to be adding functions serially (for example, if you are going to add the constructor
last).
Warning: Do not mix these two methods.
Note: You can only add one function once per “slot”. Once a function is in place, it can't be
overwritten.
Throws: AssertionError, IndexError
Returns: function (Fcn)

● cook(): Not thread safe. Cook self and all the classes and parent classes it contains. This
converts an embryo to a “mature” class. This needs to be the last thing you do to an embryo
before you begin to use it as a class. A cooked class can not be changed.
Returns: Cooked class, which may be different from self.

Properties
● attributes: Returns a space separated list attributes, which is some combination of “”,

“private”, “public”, “static”, “script” , “noChildren”.
See the section on Class Attributes (below).
Returns: String (the currently set attributes)

● __constructor: Return the class constructor, if one exists. If there is no constructor, Void is
returned. Thus, the following always works:
 class.__constructor();
Returns: Fcn or Void

● classes: Returns a list of the contained classes, in creation order.
Returns: List or ROList (if no classes)

● container: Returns the class that contains this class. If this is a root class, Void is returned.
Returns: Void or Class

● fcns: Returns a list of the functions in this class, in creation order. The list starts with the
constructor. “Data” classes63, such as NullClass don't have any functions.
Returns: List

● fullName: Returns one of two strings:

63 A data class is a class that contains only data, no runnables.

112 Class

Objects

● If the class or an instance of the class, or the class is contained in a class that is in the
Vault, returns a “vault” path, where the class can be found in the Vault. For example:
c:=Compiler.Asm;
c.name → “Asm”
c.fullName → “TheVault.Compiler.Asm”
c().fullName → “TheVault.Compiler.Asm”

● Otherwise, the class names up to the root class are concatenated to form the full name.
For example:
AKA(Top); class A{ class B{ println(fullName) }}
→ “Top.A.B”

FullName isn't the most useful of properties and may do more than you want. If you only want
the second behavior, you can use this function:
fcn classFullName(klass){
 container:=klass.BaseClass.container;
 name :=klass.BaseClass.name;
 if (not container) return(name);
 return(classFullName(container) + "." + name);
}
classFullName(Compiler.Asm) → “Asm”
classFullName(TheVault.Compiler.Asm.Code) → “Asm.Code”
Returns: String

● isClassified: Returns True if self (usually an embryo) has all classes added, including parent
classes. An incomplete class can not be copied, used as a parent or added to a class. Note that this
doesn't tell you anything about the functions.
Returns: Bool

● isCooked: Returns True if self has been cooked.
Returns: Bool

● isEve: Returns True if self is a Eve or reference class. Eve classes are the very first instance of a
given class, from which all other instances of that class are copies of.
Returns: Bool

● isPrivate: Returns True if the private attribute is set.
See the Class Attributes section (below).
Returns: Bool

● isScript: Returns True if the script attribute is set.
See the Class Attributes section (below).
Returns: Bool

● isStatic: Returns True if the static attribute is set.
See the discussion (below) on Static Classes.
Returns: Bool

● linearizeParents: Returns a list of parent classes in search order. Also known as method
resolution order. The class hierarchy is flattened into a left-first breadth-first path with duplicates
removed. See Keywords.class.inheritance for an explanation.
Returns: List of classes. Self is always the first item.

● name: Returns the name that the class was created with. For example, Compiler.Asm.name →
“Asm”
Returns: String

● NullClass: Returns a Class with no variables, functions, classes or parents.
● parents: Returns a list of the classes this class inherits from, in creation order.

 113

Objects

Returns: List or ROList (if no parents)
● rootClass: Returns the class at the top of the class tree, that is, the class that has no container

and contains self.
Examples:

● Compiler.Asm.rootClass → Class(Asm)
● If a file consists of the following line:

 class C{ var v; class C2{var v;} }
then (“RootClass#” is the default name of the top level class):
 C.rootClass → Class(RootClass#)
 C.C2.rootClass → Class(RootClass#)
This might seem surprising until you remember that a file is itself a Class that contains all
the Classes in it.

● Since class C{ class C2{} } is static (contains no mutable data), C.rootClass →
Class(C) and C.C2.rootClass → Class(C2).

Returns: Class
● theInitFcnIs: Returns the index of “init” in self.fcns.

When a class instance is created, the function marked as the init function is called (by the VM).
If it is not the constructor, init will call the constructor. Embryos set the init function to zero. It is
reset by addFcn.
Returns: Int

● topdog: Returns the class at the top of the class hierarchy, that is, a class that inherits from self,
which might be self. The “youngest” child class. Topdog is a child of self. Or grandchild, or great
grandchild, etc.
If self has a static class between it and the youngest child, topdog stops at the static class.
Examples:

● class A{var v;}.topdog → Class(A)
● class A{var v;} class B(A){} B.A.topdog → Class(B)
● class A{var v;} class B(A){var v;} class C(B){}

C.B.A.topdog, C.A.topdog → Class(C)
● class A{var v;} class B{var v;} class C(A,B){}

C.A.topdog, C.B.topdog → Class(C)
Returns: Class

● varBits: Returns bits strings for the read only and proxy vars. The ordering is the same as the
varNames list. If a var is read only or a proxy, the corresponding “bit” is “1”, otherwise it is “0”.
If there are no ones, the value is “”.
Use this value when creating an embryo or serializing a class.
Returns: ROList(String(roBits), String(proxyBits))

● varNames: Returns a list of the names of all the variables, in creation order (sorted).
Returns: List of Strings

● vars: Returns a list of the class variables and their values, in creation order (sorted).
For example: L(L("v1",1), L("v2","hoho"))
Returns: List of lists: L(L(name,value), …)

Operators
● +: This operator can be shadowed by the function __opAdd, it will receive one parameter.

Throws: NotImplementedError
Result: Object

● -: This operator can be shadowed by the function __opSub, it will receive one parameter.

114 Class

Objects

Throws: NotImplementedError
Result: Object

● *: This operator can be shadowed by the function __opMul, it will receive one parameter.
Throws: NotImplementedError
Result: Object

● /: This operator can be shadowed by the function __opDiv, it will receive one parameter.
Throws: NotImplementedError
Result: Object

● % : This operator can be shadowed by the function __opMod, it will receive one parameter.
Throws: NotImplementedError
Result: Object

● ==: Returns True if the two classes are the same. The same, self.id==X.id; not instance related,
etc.
This operator can be shadowed by the function __opEQ, it will receive one parameter. For
example, you may prefer equality to be self.isInstanceOf(X).
Result: Bool

● !=: not self.eq(X)
This operator can be shadowed by the function __opNEQ, it will receive one parameter.
Result: Bool

● <: This operator can be shadowed by the function __opLT, it will receive one parameter.
Result: Object (but should be Bool)

● <=: This operator can be shadowed by the function __opLTE, it will receive one parameter.
Result: Object (but should be Bool)

● >: This operator can be shadowed by the function __opGT, it will receive one parameter.
Result: Object (but should be Bool)

● >=: This operator can be shadowed by the function __opGTE, it will receive one parameter.
Result: Object (but should be Bool)

● -: Unary minus
This operator can be shadowed by the function __opNegate, it will receive no parameters.
Result: Object

Discussion
Classes are containers, they can hold variables, functions and other classes. They implement the class
keyword. The distinction between class and class instance is artificial; all classes are, in fact, class
instances. It does, however, provide useful terminology; a “class” is the original, class instances are
progeny of a class.

Use BaseClass
If you want to access the methods or properties of an unknown class, use klass.BaseClass.name. The
reason for this is that classes can overload method/property names64. Consider:

64 It is perfectly reasonable for a class creator to reuse names.

 115

Objects

class C{ var setVar=5; }
f(C);
fcn f(klass){
 klass.setVar(0,7); // does nothing
 klass.BaseClass.setVar(0,7); // changes "setVar" in C to 7
}
One drawback to BaseClass is if you want to set a variable. Using class C (above),
C.BaseClass.setVar=7 generates a syntax error65. To work around this, use setVar:
C.BaseClass.setVar("setVar",7).

Class Attributes

The attributes are set with Keywords.Attributes or when creating an embryo. Setting an attribute doesn't
propagate the attribute to children although it may affect the children.

script
This is just a informational flag. Class ignores it but other objects might care. This attribute can only be
set on the root class.
See Objects.Import for how this this is used.

static
This is used to inform the VM that this class doesn't want to be copied or new instances created.
Note: If there is an “init” function, the constructor is only run once, at creation time (for the reference
instance).
 class [static] C{} C(); → constructor runs for both instances
 class [static] C2{ fcn init{} } → constructor is run
 C2(); → init runs but constructor doesn't
You can inherit from static classes but a static class can't inherit.
Any class can be static.
A static class doesn't have a container.
See the discussion (below) on Static Classes.

noChildren
You can not inherit from one of these classes; it can not be the parent of any other class. This is useful
for classes that are containers for other classes. For example, the Walker class contains a Walker class
and a range function, the Exception class contains a zillion exception classes. You don't want to inherit
from one of these, the noChildren attribute allows you to enforce this at compile time.
Any class can be noChildren.

Parent Classes and Top Dogs

When a function is called in a parent class, that function runs in the “parent” space, not in self space. It
is as if the parent class was compiled separate from self and the function call is made to an instance of
the parent. This is all well and good but a problem arises when the parent wants to access something in
the child. This is backwards from the “normal” way of doing things, where the child wants to access
something in the parent. The basic problem is that at compile time, the parent class doesn't know about
the child class yet (although the programmer should). The topdog property provides a way around this.
To illustrate:

65 Because the compiler rewrites it to C.BaseClass("setVar")=7

116 Class

Objects

 class A{fcn f{ println(x); var v;}} // doesn't compile, x unknown
 class A{fcn f{ println(topdog.x); var v;}}66 // this compiles
 class B(A){ var x=123; }
Now, when we call the function B.f (which is in parent A), f will have access to B.x:
 B().f() → 123 // create an instance of B and call B.A.f
Topdog returns the the top of a class hierarchy and from there late binding will work its way down the
classes (or up through the parents, depending on how you look at it) until it finds a match.
 class C(B){} C().f() → 123
Here, A.f starts looking in C, doesn't find x, moves to B and succeeds.
 class D(A){ var x="foo"; }
 class E1(B,D){}
 E1().f() → 123
 class E2(D,B){} // same as E1 but parents are switched
 E2().f() → “foo”
Here we see the difference parent search order makes.

Topdog does have a limitation and that is it can't access the middle of a class tree, you'll have to do that
explicitly. This doesn't seem to be much of a drawback, such a capability would be prone to inducing
confusion and head aches. But if you have to, you can do something like:
 class A{fcn f{println(topdog.B.x);var v;}} // minor change to A
 E2().f() → 123 // NOT “foo”
Here, A.f started its search at E2, found parent B and then found x, bypassing D explicitly. And, of
course, it will fail miserably if the topdog doesn't contain a “B”.

The take away here is (although not explicitly shown) is that topdog is “safest” when the parent class
that uses it also has a copy of what it is looking for as a fall back should the child classes (if there are
indeed any) lack the required resource. This is demonstrated in the virtual class example below.

As you can imagine, there are zillions of permeations awaiting your creativity.

There are a couple of places where topdog is very useful: inheritance testing and calling a child function.

Virtual Classes
“Virtual” classes are basically templates to build classes from. The template will probably contain
functions that are meant to be replaced by an inheriting class. But, when running the template code, that
code doesn’t know about the new implementations. Check out the following code:
class Template{
 fcn one{ two(); }
 fcn two{ throw(
 Exception.FcnNotImplementedError(self.fcn)); }
}
class C(Template){fcn two{ println("two"); }}
c:=C();
c.one(); // throws FcnNotImplementedError
The fact that c.one throws an exception is clearly not what we want. How to fix? Have the Template
look to the derived class for two:
 fcn one{ self.topdog.two(); }

66 The var v; is necessary, otherwise A is static (and A.topdog is A) and f() will fail.

 117

Objects

When this runs, it looks to the top of the class hierarchy and finds the implementation of two in class C.
If C doesn’t implement two, then resolve will search the parents until it finds Template and one will
throw the expected exception.

Testing Inheritance
If you have a “super” class, one that is basically a container for a bunch of other classes, you probably
don’t want anybody to inherit the mothership just to get one of the contained classes, they should inherit
from the child class directly. The following code shows how:
class C{
 class C2{}
 if (not self.topdog.isInstanceOf(self))
 throw(Exception.NameError(
 "%s can't be a parent (of %s)"
 .fmt(self,self.topdog.name)));
}
class B(C){} // error
class B2(C.C2){} // OK
At runtime, the B(C) line throws:
 NameError: Class(C) can't be a parent (of B)
In this case, Attributes(noChildren) is a much better solution as it is a compile time check instead of
a runtime check.

Static Classes

A static class is one that doesn't make copies of itself (or create new instances), has no container or
parents; it is static, unchanging. It can not access anything in the class it is contained in. Usually, this
isn't what you want, but it makes sense in the following situation: one or more classes that are part of a
class hierarchy are “global” to the entire hierarchy, essentially global “variables” for the hierarchy (class
patriarchs/matriarchs if you will). These might be classes that only contain “utility” functions:
class File(Stream){
 class [static] FileUtilities{
 fcn isDir(fileName){ … }
 fcn del(fileName) { … }
 }
 fcn open(fileName,mode){ … }
 fcn close { … }
}
File.FileUtilies.isDir("foo");
f:=File.open("bar","r");
f.FileUtilities.del("foobar");
Clearly, we don't want instance f to contain a new copy of FileUtilities. Declaring File static keeps that
from happening.
A cleaner way to do the same thing would be:
Class [static] FileUtilities{
 fcn isDir(fileName){ … }
 fcn del(fileName) { … }
}
class File(Stream,FileUtilites){
 fcn open(fileName,mode){ … }
 fcn close { … }
}

118 Class

Objects

File.isDir("foo"); FileUtilities.isDir("foo");
f:=File.open("bar","r");
f.del("foobar");
The “static-ness” of a class applies to its variables, contained classes and functions.
This also means that the class variables are not unique. Consider
class [static] C{ var v; }
C.v → Void
c:=C();(C.id==c.id) → True
c.v=123; C.v → 123
Since variable v is static, both C and c contain the same variable so changing it in either class changes it
for both.

The Exception and Import classes use this in conjunction with a “redirecting” init in the root class:
 Attributes(static); // Don't make copies of this class
 fcn init{ returnClass(someOtherFcnInThisClass()); }

Auto Static
A class may decide to make itself static if the following are true:

● There are no variables or parents.
● Any containing classes have no variables.

This rarely happens (or rather often in test cases).

Late Binding

Like most dynamic languages, zkl makes extensive use of “late binding”. A data reference is “late
bound” when that reference is resolved at run time. A data reference is “statically bound” when, at
compile time, the data can be referenced directly. As with most things, there are trade offs. Static binding
is much more efficient and the compiler can check validity, late binding is much more flexible. The
compiler waffles; it statically binds when it can and delays binding when it can't.

Binding Rules
● Variables force late binding. That is, accessing data that is contained in a variable requires a run

time examination to determine what is actually in that variable.
● Function calls usually force late binding, if the compiler can't ascertain what the function returns.
● Class creation is usually statically bound. If the constructor or init use returnClass, the compile

may switch to late binding.
● There are no rules. The compiler is free to bind more aggressively.

Usually, you only care about when data is bound is when:
● Your program fails at run time and you think the compiler should have found the error (expect to

experience this a lot if you are used to a statically typed language such as C or Java).
● You are worried about efficiency.
● You want to make use of late binding.

Delegation

One way to do delegation is to inherit from a static class that uses variables to hold the “delegation”
information. By making the delegator class static, changing the delegator will cause every inheriting
class to change its behavior. An example is a global logging resource:

 119

Objects

 class [static] Logger{ // Only one logging resource
 var [mixin=File] dst; // File like semantics, eg Data, Pipe
 dst=File.DevNull; // initially, the logger does nothing
 fcn log(msg){dst.writeln(vm.pasteArgs())}
 }
Then, any class that needs to log can inherit from Logger and call log() when it needs to log an event:
 class A(Logger){ log("A has been created"); }
 class B(Logger){ fcn f{ log("Hello from B"); } }
What happens when a new instance of A is created (A())? Not much, the log message is ignored. Ditto
when B.f() or B().f() is called.
 var b=B(); b.f(); // nothing is logged
Now, let's turn on logging (magic happens here):
 Logger.log=Console; // or A.Logger.log=
Now, if we create a new A, something happens:
 A() → “A has been created”
And calling function f in b causes a log message, even though b has not changed:
 b.f() → “Hello from B” // b has NOT changed
Why is changing Logger.log termed magic? It's not, it is just looking at inheritance from a runtime
perspective. Here, there is only one Logger class and every child shares it. When Logger changes, all
children “automagically” inherit new logging behavior. By simply changing the log function, a central
logging controller67 can control the behavior for all classes that log (or functions that call Logger.log)68.
Of course, you don't need to inherit from Logger to get this behavior,
 class B{ fcn f{ Logger.log("Hello from B"); }
does the same thing; you can slice and dice this methodology many ways.

Dynamic Class Creation

To illustrate various points about class creation, let’s create a simple class two different ways:
 1. class Test{
 var x=111; // constructor code

 println("Hello World!"); // constructor code
 fcn one{ println("x = ",x); }

 }
Create a new instance and call the “one” function:
 Test(); → “Hello World!”
 Test.one(); → “x = 111”

Now, let’s create the same class at runtime:
 2. text:="class Test{"
 " var x=222;"
 " println(\"Hello World!\");"
 " fcn one{ println(\"x = \",x); }"
 "}";
Compile the class, construct it and call one:
 x:=Compiler.Compiler.compileText(text);
 x=x(); → Creates a new instance and prints “Hello World!”
 x.Test.one(); → “x = 222”
Notice a subtle, but important, difference: Here we created a new instance of Test before calling one. We
didn’t do that before. Why? Because, if we didn’t, x would be Void, not 222. Why? Because all variables

67 For example, the system event logger.
68 Thread safety would make this example a bit more complex.

120 Class

Objects

are initialized to Void. So why did the first case work? Well, when a file is compiled, all the classes in
the file are “wrapped” in a class (the RootClass), and, when that file is loaded, the root class constructor
calls the constructors in all the classes it contains. When we call the compiler directly, it just compiles
the code and creates the Class, it doesn't construct it, so we need to, directly or indirectly (by creating a
new instance). The following would also works:
 x:=Compiler.Compiler.compileText(text);
 x.__constructor(); → “Hello World!”
 x.Test.one(); → “x = 222”
Also notice that we have to call x.Test.one() and not x.one(). Again, this is because the compiler
wraps all source code into a class (RootClass#). And again, we are free to discard that wrapper:
 x:=Compiler.Compiler.compileText(text);
 println(x); → Class(RootClass#)
 println(x.classes); → L(Class(Test))
 x=x.Test;
 x.__constructor(); → “Hello World!”
 x.one(); → “x = 222”

The Null Class

NullClass is a “convenience” class; it exists as helper class for times when you need a placeholder or
some such. It is a static class that contains nothing, not even a constructor; thus you can't run it or create
instances (NullClass() is an error and all copies are just NullClass).

 121

Objects

Compiler

The Compiler Suite
Full name: [TheVault.]Compiler.*

Multi-Pass!
-- Leeloominaï (Leeloo), describing the compiler

Abstract
The Compiler suite tokenizes, parses, compiles and assembles source code into Objects.

The suite consists of the Assembler, Compiler, Parser and Tokenizer.

There are two files of constants used by the compiler suite: opcode.h.zkl and vm.h.zkl. They are located
in the include directory and can be used with:
 include(opcode.h.zkl);
 include(vm.h.zkl);

Compiler.Asm

Full name: [TheVault.]Compiler.Asm
Inherits from: Class
Notes: This is a static class.
See also: Objects.Class, Objects.Fcn

Abstract
The assembler converts VM asm source code into VM machine code. It also provides several utility
functions: a disassembler, file/class reader, and class to file writer.

Assembler Classes
● Code: This class holds VM machine code. It consists of two Data objects: code, which holds the

code and strings, which hold text constants.
● Label: This class generates unique strings based on the text “label#” or a passed in tag. It is

thread safe; many threads can use the same Label and not worry about name conflicts (as they
might have to if they used multiple instances).

● StringTable: This class manages a Data object as a symbol table; a “packed” list of strigs.

Assembler Functions
● asm(text): Convert text to Asm.Code. Text contains lines; strings separated by newlines (“\n”).
● asm(Data): Data has to be in Strings mode.
● asm(File): Assemble the contents of a text file.
● asm(List): Convert lines of text to Asm.Code.
● asm(Pipe): Asm expects separate lines.

A line can have white space in it and blanks lines are ignored.
Examples:
 Compiler.Asm("self\ndone");
 Compiler.Asm(L("self","done"));

122 Compiler.Asm

Objects

 Compiler.Asm(Data(0,String,"self\ndone"));
 Compiler.Asm(Data(0,String,"self","done"));
 Compiler.Asm(File("foo.asm","r"));
Note: The requirement that a Data be in strings mode is so the assembler can read a line at a
time. You can create it in anyway you wish and set the mode before passing it to asm. Strings
mode just makes things easier for everybody.
Thread safe.
See Objects.Fcn for an example.
Throws: AsmError
Returns: Asm.Code

● init(sourceCode): Since this is a static class, init is just a front end to Compiler.Asm.asm.
Returns: asm(sourceCode)

Loader

Reader/Writer Functions
● readRootClass(fileName, addToVault=False, runConstructor=True)

You probably don't need this, the same functionality is in System.LoadFile. This code is the
reference implementation.

● writeRootClass(klass,fileName,bang="")
This method writes a RootClass (a class that isn't contained in any other class, a typical case is a
code file) or static class to a Stream, typically a file but Data and ZeeLib.Compressors also
work. Note that this is a binary stream.
If bang parameter is present, it is used to write a [Unix] “#!” at the start of the output (“#!
text\n”). This is useful is you want to use compiled scripts (for example CGI scripts). The loader
skips this text if it sees it.
Examples:

● Compiler.Asm.writeRootClass(klass,"foo.zsc");
● writeRootClass(CGIClass,"cgi.zsc","#!/usr/bin/zkl");

This writes “#!/usr/bin/zkl\n”at the start of cgi.zsc. When the Apache web server accesses
this CGI file, it will hand the file to /usr/bin/zkl to deal with, which is what you want
(because Apache doesn't know diddly about zkl). Note that this also works for the
Windows version of Apache: “#!C:/Bin/zkl”.

See also: Objects.Data:Stream Example

Disassembler Functions

● disClass(klass,outputStream=Console)
Disassemble a class (to VM machine code source) and send the text output to a Stream. This
implements Class.unasm. The result isn't in a form that can be fed back to asm, but it is close;
there is a bunch of additional information to the raw code.
The outputStream can be File, List, a Class or any object that implements “writeln” and “flush”
(although “close” might be added in the future). If you want to process the output, you can store
it in a List and post process it, or use a filter class and process on the fly:

 123

Objects

 class Filter {
 fcn flush {}
 fcn writeln(line=""){ // writeln() is called
 // do something with line, like save it
 }
 }
 self.unasm(Filter);

● disCode(Asm.Code, outputStream=Console): Disassemble a Code class.
For example:
 Compiler.Asm.disCode(Compiler.Asm("self\ndone")) →
 0:171 self
 1: 0 done

● disFcn(function, outputStream=Console)
Disassemble a function. This implements Fcn.unasm.

Discussion
Currently, a VM code reference doesn't exist so the assembler is likely to be a big black box.

The disassembler functions write to a Stream, which defaults to the Console, but other streams works as
well, for example:
Pipes:
 p = Thread.Pipe();

// the next two are equivalent
 self.unasm(p); Compiler.Asm.disClass(self,p);
Files: self.unasm(File("unasm.txt","w"));
Data: d=Data(); self.unasm(d); d.text

Compiler.Compiler

Full name: [TheVault.]Compiler.Compiler
Inherits from: Class
Notes: This is a static class.
See also: Objects.Class, Objects.Fcn

Abstract
Convert source code into a Class.
The compiler is thread safe and you don't need to create an instance. Just use the static class.

Compiler Functions
● compileFile(fileName,debugLevel=0): The file name is the name of a file that contains zkl

source code. The “.zkl” extension is optional (actually, if you include an extension, the compiler
doesn't care what it is, as long as the file contains text). On Windows, you can use forward slash
(“/”) instead of backslash (if you do use backslash remember to double them up because
backslash is the quote character).
Throws: SyntaxError, CompilerError, others
Returns: Class

● compileText(text,debugLevel=0): Compile a string, list of strings or some object that will
stream lines of text (such as Data or File).

124 Compiler.Compiler

Objects

Throws: SyntaxError, CompilerError, others
Returns: Class

● init(fileName,debugLevel=0): This returns compileFile(fileName,debugLevel). This is a
convenience function so you can type Compiler.Compiler("foo") instead of
Compiler.Compiler.compileFile("foo").

Discussion
The compiler converts source code to a Class.
The compiler can be used from the command line:
 > zkl -c Src/Compiler/Compiler.zkl
In a program:
 compileFile = Compiler.Compiler.compileFile;
 klass = compileFile("Src/Compiler/Compiler");
In the zkl shell:
 Compiler.Compiler("Src/startup")

Compiler.Parser

Full name: [TheVault.]Compiler.Parser
Inherits from: Class
Notes: This is a static class

Abstract
The parser converts a token stream into a parse tree that can be consumed by the compiler.
The parser is thread safe and you don't need to create an instance. Just use the static class.

Parser Functions
● parseFile(fileName,debugLevel=0,wait=True)

Throws: SyntaxError, ParserError, others
Returns: Parser.RootClass

● parseText(text,debugLevel=0,wait=True)

RootClass Functions
● dump(indent=""): Print the parse tree

Warning
● This document is almost guaranteed to be out of sync with reality. Treat as informative rather

than authoritative.

Discussion
If file “fact.zkl” contains:
fcn fact(x){ // the recursive part. input: x output: x!
 if (0 == x) return(1); // 0! = 1
 return(x * fact(x - 1)); // x! = x * (x-1)!
}

 125

Objects

then
klass:=Compiler.Parser.parseFile("fact.zkl");
// klass=Class(RootClass)
klass.dump()
 →
class fact Input source: "fact.zkl"
 class __Constants#()
 { Block(Class)
 vars(Class): L("__DEBUG__", "__VAULT_PATH",
 "__NAME__", "__FILE__")
 <DR*>__DEBUG__
 <==0
 <DR*>__VAULT_PATH
 <==""
 <DR*>__NAME__
 <=="fact"
 <DR*>__FILE__
 <=="fact.zkl"
 }
{ Block(Class)
 fcns = L("fact")
 vars(Block) = L("x")
 fcn fact(x)
 Default args:
 Void
 { Block(Fcn)
 if
 Exp(
 (
 0
 ==
 <DR>x
)
)
 return(
 1
)
 return(
 Exp(
 <DR>x
 *
 <DR>fact(
 <DR> Exp(
 <DR> <DR>x
 <DR> -
 <DR> 1
 <DR>)
 <DR>)
)
)
 }
 <DR*>x
 <==<DR>ask(
 <==<DR> "Take factorial of: "
 <==<DR>)

126 Compiler.Parser

Objects

 <DR>println(
 <DR> <DR>x
 <DR> "! = "
 <DR> <DR>fact(
 <DR> <DR> (<DataRef>
 <DR> <DR> x
 <DR> <DR> toInt()
 <DR> <DR>)
 <DR> <DR>)
 <DR>)
}

Compiler.Tokenizer

Full name: [TheVault.]Compiler.Tokenizer
Inherits from: Class
Notes: This is a static class

Abstract
The tokenizer converts a file or other text Stream into a token Stream.
The tokenizer is thread safe and you don't need to create an instance. Just use the static class. The two
functions create their own instances.

Warning
● This document is almost guaranteed to be out of sync with reality. Treat as informative rather

than authoritative.

Classes
● SourceCode: The source code that was compiled.

Vars: text, a string of the entire source.
Functions:

● SourceCode[n], where n is one based.
Returns the nth line from the source.

● formatLine(n), where n is one based.
Returns something like: “foo.zkl:Line 23:x = 5”

Tokenizer Functions
● tokenizeFile(fileName, wait=True)
● tokenizeText(text, wait=True)

Tokenize a file or a bunch of lines of text. Text can be Data, File, List, String, Pipe or any object
that supports walker and contains lines of text (Strings).
The basic difference between these two is tokenizeFile will open a file if fileName is a String.
Otherwise, fileName or text can be a Stream object.
Throws: SyntaxError, TokenizerError, PipeError,
Returns: L(List, SourceCode) if wait
Returns: L(Thread.Pipe, SourceCode) if not wait

 127

Objects

Discussion
The Tokenizer reads text and converts it into a stream of tokens that are typically fed into the Parser. It
strips out comments (“#”, “//” and “/* */”) and does some text transmogrifications as the mood strikes it.
The Tokenizer is threaded.

If wait is True, you won't get a result until the source has been completely tokenized, then a list of
tokens is returned. Otherwise, you'll get a Pipe immediately, which will be filled as tokens become
available. The pipe will close once the source has been tokenized. It will break if there is an error.

The output stream contains both strings and integers. The strings are the tokens and the integers are the
line numbers. A line number proceeds the tokens for that line.

It is required that the source stream be line based, that is, it contains lines in the form of a String
terminated with a newline (“\n”). As the tokenizer is free form, the line concept is pretty liberal, the
newline requirement is so the embedded line numbers will track the source.

Example
If file “fact.zkl” contains:
//-*-c-*-
/*
 * Factorial the recursive way
 */
fcn fact(x) // the recursive part. input: x output: x!
{
 if (0 == x) return(1); // 0! = 1
 return(x * fact(x - 1)); // x! = x * (x-1)!
}
then
 tokens,sourceCode := Compiler.Tokenizer.tokenizeFile("fact.zkl");
results in the Tokenizer collecting all the tokens into a List and returning them.
tokens = L("{",5,"fcn","fact(","x",")",6,"{",7,"if","(","0","==","x",")",
 "return(","1",")",";",8,"return(","x","*","fact(","x","-","1",")",")",";",9,"}","}")
sourceCode[1] → “//-*-c-*-”
sourceCode.formatLine(3) → “fact.zkl:Line 3: * Factorial the recursive way”
sourceCode.text → the source text as one big string

128 Compiler.Tokenizer

Objects

Console

Full name: [TheVault.]Console
Inherits from: Object

Abstract
The Console object interacts with the text console. It is the basic user I/O interface.

Methods
● ask(prompt): Concatenate the prompt, write it to the console and wait for input from

File.stdin. Newline (ie the Enter key) signals the input is ready.
For example:
 ask("The answer is: ");
 pw := ask("Hello ",name,", the password is: ");
Returns: The input text, with the attached newline.

● ask(n [,prompt]): If n is an integer and vm.nthArg(n) doesn't throw, return
vm.nthArg(n).toString(). Otherwise, return ask(prompt).
This is usful in scripts where parameters may or may not have been passed in on the command
line.
Returns: String

● close(): This method does nothing. It is here so Console acts like a Stream.
Returns: self

● flush():This method does nothing. It is here so Console acts like a Stream.
Returns: self

● print(object(s)): Converts parameters into Strings and write the results to File.stdout. It is
the same as the write method.
Returns: The text printed.

● println(object(s)): Convert the parameters into a Strings and write the results to
File.stdout, appending a newline. It is the same as the writeln method.
Returns: The text printed.

● write: This method is another name for print.
● writeln: This method is another name for println.
● toBool(): Returns True.

Properties: None
Operators: None

 129

Objects

Data

Full name: [TheVault.]Data
Inherits from: Stream, Object

Abstract
The Data object holds an arbitrary byte stream or sequence of bytes – a bag-O-bytes. It grows and
shrinks as needed.
It is, in effect, a byte editor and a byte stream.
It is NOT thread safe. However, if the content is static and only one thread moves the cursor, it can be
used in a thread safe manner.

Terms
● “bytes” refers to the contents of a Data object.
● “offset”: See Rules for Offset (below)
● “numBytes”: See Rules for numBytes (below)
● “cursor”: Data’s internal notion of offset. Used by the Stream methods.

Methods
● append(x,…): Appends data to bytes.

Object Action
Data Appends the bytes of x to bytes.
Int Appends the LSB (ie x[0] or x.bitAnd(0xFF)) to bytes.

For example: append(0x1234) appends 0x34
List Recursively appends the contents of the list to bytes.

Warning: If list is circular, this is infinite recursion.
String Mode Action

Int Appends the characters of string, not including the
trailing \0

String Appends the characters, including the \0
The cursor doesn’t change.
Throws: TypeError
Returns: self

● bytes: Returns bytes from bytes as (unsigned) integers.
● bytes(): Returns the entire data set.
● bytes(offset): Returns one byte at offset as an Int
● bytes(offset,numBytes): Returns numBytes in a list of Ints
● bytes(offset,*): Returns all bytes at, and after, offset.

Each Int is one unsigned byte of bytes.
If there are not bytes (eg data is empty or numBytes is zero), Void is returned.

Bytes is basically an alternative to subscripting ([]), providing the same semantics, but returning
the data as numbers.

130 Data

Objects

For example, if bytes is 0,1,2,3 (d:=Data(); d.append(0,1,2,3)):
 Bytes(0) → 0
 bytes(0,2) → L(0,1)
 bytes(0,*)≈ bytes() → L(0,1,2,3)
The mode is ignored and the cursor doesn't move.
Returns: List, Int, Void

● charAt(offset,length=1): Same as get but always returns a String.
Throws: IndexError
Returns: String

● clear([stuff]): Clear self, ie reset it to a just created state, optionally appending stuff. Mode
doesn’t change.
Returns: self

● close(): Does nothing. For Stream compatibility.
Returns: self

● copy(): Creates a copy of self. The contents and cursors are the same.
Throws:
Returns: Data

● create():
● create(Void,bytes):
● create(initialSize=0, mode=Int|String [,someData ...]):

Create a new Data instance. If initialSize is zero, a default size is used. Otherwise, space for
initialSize bytes is allocated.
A “silent” “\0” (string terminator) is always implicit at the end of the buffer, no matter what the
mode is. This terminator isn’t counted.
If someData is present, it is appended to the new Data.
Throws: ValueError (size too big)
Returns: Data

● del(offset): Delete one byte at bytes[offset]
● del(offset,numBytes): Delete numBytes bytes starting at offset.
● del(offset,*): Delete all bytes from offset on.

Delete some bytes from bytes, starting at, and including, the bytes at offset.
The cursor is ignored.
Throws:
Returns: self

● fill(byte): Stuff as many bytes into self as it will hold (without growing).
fill(byte,sz): Fill self with with sz bytes, length is set to sz.
Returns: self

● filter([f [,static parameters]]):
Push content through a filter and return a Data of those that pass (f(d) is True).
The cursor usually moves and howza determines how content is read.
Returns: Data with the same mode as self.

● find(string|Data,offset=0,length=*): Searches bytes for string.
● find(string|Data): This is the same as findString except that partial matches work:

 d:=Data(); d.append("one","two"); → “onetwo\0”
 d.find("et") → 2; // findString would fail.
You can also search for binary data using a Data:
 Data(0,Int, 1,2,3).find(Data(Void,2)) → 1

 131

Objects

The cursor is ignored and doesn't move.
Returns: Int (index of start of string), Void

● findString(string,offset=0,length=*): Searches bytes for string, including the \0. Returns
the offset where string starts, else Void. The entire search string has to fit in length characters.
The cursor is ignored and doesn't move.
Note that mode has an effect. For example:
 d:=Data(); d.append("one","two"); → “onetwo\0”
d.findString("one") will return Void, d.findString("two") returns 3 but
 d:=Data(0,String); d.append("one","two"); → “one\0two\0”
now d.findString("one") returns 0 and d.findString("two") returns 4.
findString("onetwo") only succeeds in the first case.
A match has to be a “complete” match; all of string has to match. In the examples above,
findString("o") won’t match the “o” in “one” but will match the “o” in “two” (→ 5).
If string is “”, findString returns the end of the current string. You can use that to sequentially
find the start of every string69:
 d:=Data(0,String,"one","","two"); offset:=n:=0;
 while(offset < d.len()) {
 n+=1;
 println("String %d starts at %s".fmt(n,offset));
 offset=1 + d.findString("",offset);
 }
 → String 1 starts at 0
 String 2 starts at 4
 String 3 starts at 5
Since there in an implicit “” at the end of a Data, findString will not go out of bounds.
Throws:
Returns: Int (index of start of string), Void

● flush(): Does nothing
Returns: self

● get(offset,numBytes): Same as __sGet.
Throws: IndexError
Returns: Data | String | Int (depending on mode and numBytes)

● howza(): Return the current value.
Returns: Int

● howza(int): Howza determines the default way data streams out of Data (by filter, pump,
reduce and walker). The initial value is 1 (lines).
See walker for values.
See also: mode
Returns: self

● howza(int,True): Same as howza(int) but the change is temporary, it is reset after the next
filter, pump, reduce or howza.
Returns: self

● index(x): The same as find, but throws IndexError if x isn’t found.
Throws: IndexError, TypeError
Returns: Int

● inlineCursor([False]): Returns the current text cursor position.

69 Or, write less code and do it with readString and cursor. Or with walker(2).

132 Data

Objects

● inlineCursor(True): Return text cursor with tab stops counted.
● inlineCursor(0|1): Move the cursor to the beginning of the line. Returns self.
● inlineCursor(*): Move the cursor to the end of the line. Returns self.
● inlineCursor(offset,expandTabs=False): Move the cursor to the requested position in the

line. Returns self.
The text cursor is the cursor offset from the beginning of the line. It is one based; the first
character in a line is at offset 1. This method moves the cursor back and forth in the current line
and will not leave the current line. If tab expansion is requested, tab positions are every eight
characters (offset 9, 17, etc). A tab (“\t”) is counted as if spaces were used to move the cursor to
the next tab stop.
 var d=Data(0,String,"one\ttwo","1\t2\t\t3");
 (0).pump(d.len(),List,
 d.seek, d.inlineCursor.fp(True,False));
 → L(1,2,3,4,9,10,11,12, 1,2,9,10,17,25,26)
Throws: Tries not to.
Returns:

● Int; the current cursor position relative to the start of the line. Tab counting is done as
requested.

● Self
● insert(offset,item,…): Insert items before the byte at offset. Bytes grow to fit.
● insert(0,…): Insert at the beginning of bytes.
● insert(len(),…), insert(*,…): Append to bytes.
● insert(-1,…): Insert before the last byte.

 d:=Data(); d.append("13"); → “13”
 d.insert(1,"two"); → “1two3”
The cursor is ignored and doesn't move. Use write if you want cursor semantics.
Throws:
Returns: self

● len()
● len(0,fromCursor=False): Returns the number of bytes in self.

Returns: Int
● len(1,fromCursor=False): Returns the number of lines, optionally starting at the cursor.
● len(2,fromCursor=False): Returns the number of strings.
● len(True,numBytes): Sets the size of self to numBytes.

Throws:
Returns: numBytes

● mode(): Returns the current mode.
● mode(mode): Sets the mode. Mode is word Int or String.

The mode determines how data enters Data.
Mode Action
Int Bytes is treated as a byte stream. This is the default mode.
String Bytes is treated as consecutive \0 terminated strings.

See the discussion below.
Throws: ValueError (can’t make the change)
See also: howza
Returns: self

● open(initialSize=0,mode=DATA): A synonym for create.

 133

Objects

Throws:
Returns: Data

● pop(offset): Remove a byte and return it (as an Int).
● pop(offset,length): Remove some bytes and return them (as a Data).

This method behaves the same as:
 result=bytes[offset,length]; bytes.del(offset,length);
Examples:
 Data(0,Int,1,2,3).pop(1); → 1
 d:=Data(0,Int,1,2,3); d.pop(1,2); → Data(2,3) & d is Data(1)
Throws: IndexError
Returns: Int or Data

● pump(sink[,action ...]): Another type of loop, similar to apply but with multiple actions.
The calls are r=a1(readln()); r=a2(r); r=a3(r) … or r=a1(readString()); r=a2(r);
r=a3(r) …
The read used depends howza.
The cursor usually moves.
See also: Notes on the pump method at the start of this chapter, howza, walker.
Returns: sink

● read(numBytes): Read numBytes at the cursor and return a Data. The cursor moves. Similar to
bytes. This is a binary read (that is, there are no data translations).
If num is greater than the number of bytes available, all the remaining data is returned.

● read(), read(*): Reads all of the available data (post cursor).
If a Data isn’t much use as a result, explode it with bytes, text or toBigEndian.
See also: seek, sGet ([])
Throws: TheEnd
Returns: Data

● read(numBytes|*,data): Read into a user created Data
Read bytes from a file into a Data.
d:=Data(N); f.read(M,d); reads min(data.space,M) bytes into d (overwriting). Note that N is
just a hint to Data.create so space may actually be different.
Returns: Data

● readln(n=1): Read line(s), starting at the cursor. The cursor is updated.
● readln(): Read one line and return it (string).
● readln(n > 1): Read lines into a list of strings.
● readln(n <= 0): Returns “”.

A line is terminated by a newline, \0 or both. Newlines are retained.
The mode is ignored.
Throws: TheEnd
Returns: String or List of Strings.

● readNthLine(nthLine [,offset=0]): Read the nth line. readNthLine(0) reads the first line.
NthLine and offset don't have any special semantics (such as * or -1). If an attempt is made to
read off the end of data, “” is returned.

● readNthLine(n)→ String
● readNthLine(n,offset)→ List(String,offset to start of next line)

Reads the nth line (start counting lines from byte offset).
 d:=Data(0,String,"one","two","three"); d.readNthLine(0,5);
 → L("wo",8) as the bytes are “one\0two\0three\0”

134 Data

Objects

The cursor is ignored and doesn't move.
Returns: String (“” if out of range) or List(String,Int)

● readString(): Reads from the cursor until the end of the string/buffer is found. The cursor is
updated. This is the same as readln(), except newline is ignored.
Throws: TheEnd
Returns: String

● readString(offset): Reads from offset until the end of the string/buffer is found. The cursor
is ignored.
Throws: TheEnd
Returns: String

● reduce(f,initialValue=self.read() [,parameters]): A feedback loop which starts at the
beginning of Data and runs f until the end of Data is reached. The calls are:
 p:=initialValue;
 p=f(p,self.read(),parameters);
 p=f(p,self.read(),parameters);
 …
The read used depends on howza.
To stop the loop, return(Void.Stop) or return(Void.Stop,result).
The cursor [usually] moves.
See also: howza, walker.
Returns: p

● replace(text, replaceWith): Replace text. Text and the replacement text can be String or
Data (eg binary)
 Data(Void,"onetwo").replace("one",Data(Void,0x31))
 → “1two”
The cursor is ignored and doesn't move.
Returns: Self

● seek(): Returns the current cursor position. The cursor is a zero based offset.
● seek(offset): Sets the cursor to offset.
● seek(offset,n): Sets the cursor to offset and moves it n lines.
● seek(Void,n): Starting at the cursor, move it n lines (zero to move to the start of the current

line).
If you want to set the cursor past the end so that a write will append: d.seek(*).
To set the cursor to the last byte: d.seek(-1).
Seek throws an IndexError if offset is out of bounds.
On line movements, TheEnd is thrown if the cursor tries to move too far (and the cursor is left at
the edge). Otherwise, the cursor is set to the beginning of a line.
If n is negative, the cursor is moved to the start of a previous line. Example:
 d:=Data(0,String,"one","","two"); d.seek(*);
 foreach cursor in (Utils.wap('wrap(){ d.seek(Void,-1) }))
 { println("String starts at ",cursor); }
 → String starts at 5
 String starts at 4
 String starts at 0
Since the data text is “one\0\0two\0”. Exercise: What happens if d.seek(*) is changed to
d.seek(-1)?70

70 “String starts at 4”,”String starts at 0”. The last character is \0 (end of line) so seek(*) is past the last line and seek(-1)
is in the last line.

 135

Objects

A line is defined as text that ends with a newline (“\n”), a null (“\x00”) or newline/null (“\n\x00”)
but not null/newline (the cursor is left at the newline).

See also: inlineCursor method, cursor property.
Throws: IndexError, TheEnd
Returns: Int (the current cursor position)

● set(offset,bytes): Overwrite the byte(s) at offset with bytes. Self does not grow. Use
del/insert or [] to change lots of bytes.
Returns: self

● __sGet(offset [,numBytes | *]): Implements subscripts ([]).
● __sGet(offset): Implements bytes[offset]
● __sGet(offset,numBytes): Implements bytes[offset,len]
● __sGet(offset,*): Implements bytes[offset,*]. “*” is short hand for bytes.len().

Mode self[offset] self[offset,len]
Int One byte @ offset Data(len)
String One character @ offset Len character string

See Subscripts and Rules (below).
The cursor is ignored, doesn't move.
Throws: IndexError
Returns: Data | String | Int

● shuffle(): Shuffle the contents using Knuth's Algorithm P.
Returns: Self

● _sSet(v,offset[,numBytes | *]): Implements subscript assignment (d[x]=y).
● __sSet(v,offset): Implements bytes[offset] = v
● __sSet(v,offset,numBytes): Implements bytes[offset,len] = v
● __sSet(v,offset,*): Implements bytes[offset,*] = v. “*” is short hand for bytes.len().

NumBytes bytes at offset are deleted and v is inserted at offset:
 d.del(offset,numBytes); d.insert(offset,v);
If the mode is Strings and v is a string, the “\0” is also inserted:
 d:=Data(0,String,"test"); d[1]="3"; d.text → “t3”
 d contains “t3\0st”
The cursor is ignored and doesn't move.
See Subscripts and Rules (below).
Throws: IndexError
Returns: v

● toBool(): Returns True if bytes contains any data.
Returns: Bool

● toBigEndian(offset=0,len=<numBytes max 8>,unsigned=True): Treats bytes as the bytes
of big-endian number and converts len of them to an Int in big endian format. A big-endian
number is one where the MSB (most significant byte) is at the lowest address (ie left most), that
is, ordered like you write them. The MSB of 0x1234 is 0x12.
For example, if bytes is 0x12, 0x34, 0x56, 0x78, 0x90
 d:=Data(); d.append(0x12,0x34,0x56,0x78,0x90);
 d.toBigEndian() → 0x1234567890 (decimal 78187493520)

136 Data

Objects

If unsigned is True, bytes are treated as unsigned number (although an Int is signed so an 8 byte
number with the high bit set will always be negative). If unsigned is False, the sign bit is
extended (twos complement).
 Data(0,Int,(-4321).toBigEndian(2)).toBigEndian(0,2,False)
 → -4321
Note: if Data contains a single byte, endianness is both big and little; that is, it is the same bytes
(unless, of course, you want endianness at the bit level).

The cursor is ignored and doesn't move.
See also: Objects.Int.toBigEndian
Returns: Int

● toData(): Returns self
● toList(offset=0):

Mode Returns
Int L(self) ie a list with a Data in it. Offset is ignored.
String A list of the strings in self. Strings are strings of characters that

end with a 0. For example, if self contains "one\0two\0" then
toList() returns L(“one”, “two”). Starts at the offset:
toList(2) → L(“e”,“two”)

The cursor is ignored and doesn't move.
Throws:
Returns: List

● toLittleEndian(offset=0,len=<numBytes max 8>,unsigned=True): Same as toBigEndian
but the conversion is to a little endian number.
 d:=Data().append(0x12,0x34,0x56,0x78,0x90);
 d.toLittleEndian() → 0x9078563412 (decimal 620494205970)
The cursor is ignored and doesn't move.
See also: Objects.Int.toLittleEndian
Returns: Int

● toString(): Returns “Data(len)”, where len is the number of bytes in self.
Throws:
Returns: String

● walker(n=howza()): Create a walker, mode is ignored. 1 is the default.
n walker.next() returns
0 Int (one byte of bytes). The cursor is ignored and doesn't move.
1 String, one line at a time using readln. The cursor moves.
2 String, one string at a time using readString. The cursor moves.
3 String, one character at a time using __sGet. The cursor is ignored

and doesn't move.
11 The same as 1 plus white space stripped from right side
12 The same as 2 plus white space stripped from right side

Examples:
● d:=Data(0,String,"foo","bar");

d.walker(0).walk() → L(102,111,111,0,98,97,114,0)
d.walker(2).walk() → L("foo", "bar")
d.walker(3).walk() → L("f","o","o","","b","a","r","")

 137

Objects

● d:=Data(0,String,"foo\nbar");
d.walker().walk() → L("foo\n","bar")
d.walker(2).walk() → L("foo\nbar")
d.walker(11).walk() → L("foo","bar")

The walker always starts at the beginning of self. Which can be annoying. If you are reading
header data using readln and now want process the rest of the Data in some kind of loop, what to
do? Probably “best” way is to tweak a walker:
 stuff=d.readln(); process(stuff);
 stuff=d.readln(); fiddle(stuff);
 walker:=Utils.wap(d.readln.fpM("")); //→ Walker w/no args to readln
 walker.pump or foreach line in (walker)
Throws:
Returns: Walker

● write(x): Inserts data at the cursor, the cursor is incremented.
The mode applies (see insert).
This is the same as d.insert(d.cursor,x);
X can be Data, Int, List (recursive is OK, circular is not) or String.
Throws: TypeError
Returns: self

● writeln(x): Same thing as write(data).write("\n");
Throws: TypeError
Returns: self

Properties
● cursor: Returns the current cursor position.

Returns: Int
● text: Convert bytes to a String and return it. Bytes are unchanged.

Returns: String(bytes)

Operators
● add (+): data + x is the same as data.append(x).

Returns: self
● eq (==): Compare two Data objects. If they are of equal length and the contents are the same,

returns True.
Returns: Bool

● neq (!=): Not eq.
Returns: Bool

Methods that honor the cursor
 copy, inlineCursor, read, readln, readString, seek, toList, walker, write, writeln

Discussion
The Data object holds an arbitrary bunch of bytes. A Data has no idea what the bytes are or what they do
and doesn’t care. It is up to the application to impose its will on the bytes and create order out of chaos.
This is both a benefit and deficit; for while they are very general, they can be painful to work with. In
fact, they were so painful that a common case was institutionalized: strings. So, in string mode, Data
will pretend that the bytes are in fact streams of null terminated text. But, whether or not this reflects
reality is up to the application.

138 Data

Objects

STRINGS and Lines
In STRINGS mode, the bytes are assumed to represent back to back null terminated strings. A null
terminated string is the string type C programmers are used to, which is eight bit characters terminated
by a zero byte (or end of Data). The readln method makes a further distinction, defining a line as a
stream of bytes terminated by a new line (“\n”) or zero (or both). So, for example, the following data has
two strings and two lines (or four lines, depending who is looking at the data):

“one\0two\nthree\n\0four”

Rules for Offset
● The first byte is zero: [0].
● The last byte is [-1].
● If offset is < 0, it is added to the length. It is an error if the result is out of bounds.

Rules for NumBytes
● The default for len is 1.
● “*” is short hand for length of bytes. [0,*] is all the bytes.
● If numBytes is < 0, it is added to the length. It is an error if the result is out of bounds.
● If offset + numBytes is greater than the number of available bytes, numBytes is truncated to what

is available.

Subscripts
There are several ways to pluck out snippets of data from Data. Subscripts provide a convenient method
for random access to Data. For example, if d is a Data(8) that contains “one\0two\0” then
 d[0] → “o” or Data(1), depending on mode
 d[2] → “e” or Data(1), depending on mode
 d[0,3] → “one” or Data(3), depending on mode
 d[0,6] → “one” or Data(6), depending on mode
Things to note from these examples:

● If the mode is DATA, Data is always returned. A lot (most?) of the time, this isn’t what
you want. bytes provides an alternate form that is more likely to fit the bill. It has the same form
without the convenience of the bracket syntax:
 d.bytes(0) → 111
 d.bytes(0,6) → L(111,110,101,0,116,119)

● In STRINGS mode, a String is always returned BUT if there is a \0 somewhere in the chunk, it
effectively ends the string, which means you might not get all the data you asked for.

Assignment examples (each example assumes d starts as “one\0two\0” (Data(8)):
● d.mode(String); d[0]="O" → Data(9)

Huh, how come the Data grows? Because, in STRINGS mode, the \0 is always appended. Thus,
d becomes “O\0ne\0two\0”. Probably not what you were expecting. The next example shows
what you probably want:

● d.mode(Int); d[0]="O" → Data(8)
d.text=“One” and d contains “One\otwo\0”

● d.mode(String); d[0,3]="A test" → Data(12)
Ahh, this is more like it. d.text → “A test”. This is why a \0 is always appended in STRINGS
mode. But all is not good; d contains “A test\0\0two\0”. Argh! The “proper” code here is:
d.mode(String); d[0,4]="A test"

● d.mode(Int); d[0,3]="A test" → Data(9)

 139

Objects

Yes! d is “A Test\0two\0”
Take aways:

● STRINGS mode can be a pain. If you don’t know exactly what is there, you probably won’t get
what you want.

● DATA mode is more predictable

Stream and Sequence: Twice the fun at one low price
Data is a dual personality object; it is both Sequence and Stream. While the modes can be intermixed, it
is probably a bad idea so be careful.
As a sequence, Data acts like a String or List, a random access object, which is its main target. But it can
also act like a Stream, like a File: data flows into the front and out the back. The Stream methods are:
 read, readln, write, writeln, seek, cursor
All the action occurs at the “cursor”, a pointer into the data that indicates where the method should start
looking at data. Since the data is in memory, moving the cursor around is cheap and fast, which can be a
big advantage over disk files. If your Stream will be undergoing a lot of changes, it might make sense to
work on it in memory before it hits the disk (assuming enough memory exists).

Sequence Example: String Tables

One thing that compilers need are symbol tables, usually two kinds: one to hold the symbols while
compiling code and another to store symbols and strings used by the compiled code. The first case
usually uses fast access tables like Dictionaries while the second case is more concerned with space
savings because the code will be retrieving strings from fixed locations and doesn’t have to worry about
look ups. The Data object is a good fit for this second case. The idea is for a Data to hold a “packed” list
of strings and to keep a list of offsets to those strings. The following class shows the implementation:
class StringTable{
 var strings; // Data
 fcn init{ strings=Data(500,String); }
 fcn add(text){
 if (Void!=(offset:=strings.findString(text)))
 return(offset);
 // string not in table
 offset=strings.len(); strings.append(text);
 return(offset);
 }
 fcn theStrings{ return(strings.toList()); }
}
When a new instance of StringTable is created, a Data is created to hold the strings. The real action
occurs in add – if the text is already in the table, we reuse it (thus the “packed” label). findString will
only find an exact match so we don’t have to worry about symbols “foo” and “foobar” overlapping. If
text isn’t in the table, it is added and its location is returned. It is up the code that uses the StringTable to
remember the offsets. In the case of the compiler, the offset is compiled into the code that will retrieve
the symbol. Let’s look at an example:
 s:=Compiler.Asm.StringTable();
 s.add("one"); → 0 // 4 bytes: “one” and \0
 s.add("two"); → 4
 s.add("three") → 8
 s.add("two"); → 4 // repeat, use entry already in table
 s.theStrings(); → L("one","two","three")

140 Data

Objects

Now, if we were a compiler generating code for println("two"), the code might look like:
 [Symbols] "one\0two\0three\0”
 getString(4) // offset of "two"
 call println

Stream Example: Code Containers

Since both Data and File both inherit from Stream, they, in many cases, can be used interchangeably.
One example of where this is the case is the routines that read and write compiled classes
(Compiler.Asm.readRootClass and writeRootClass). WriteRootClass “flattens” a class to bytes and
(usually) writes it to a file. readRootClass converts a bunch of bytes into a class. For example, to write
the Asm class to “foo.zsc”:
 Compiler.Asm.writeRootClass(Compiler.Asm,"foo.zsc")
And to read it:
 Compiler.Asm.readRootClass("foo.zsc")
But you can just as easily write to, or read from, Data:
 d:=Data();
 Compiler.Asm.writeRootClass(Compiler.Asm,d); → Data(16615)
 Compiler.Asm.readRootClass(d); → Class(Asm)
There was only one change made to accommodate both Files and Data, and that was to open the
requested file or to prep Data:
fcn writeRootClass(klass,fileName){
 if (fileName.isType("")) f:=File(fileName,"wb"); // ←
 else { f:=fileName; } // ←
 rw:=ReaderWriter(f);
 rw.writeClass(klass,klass);
 f.close();
}
fcn readRootClass(fileName, runConstructor=True){
 if (fileName.isType("")) f:=File(fileName,"rb"); // ←
 else { f:=fileName; f.seek(0); } // ←
 …
 rw:=ReaderWriter(f);
 klass:=rw.readClass();
 f.close();

 if (runConstructor) klass.__constructor();

 return(klass);
}
Only four lines of code are needed to handle both Data and Files. Or, to put it a better way, File is treated
as a special case of Stream for ease of use in the most common case.

Once we have the class in Data, we can play with it. For example, how compressible is it?
 d:=Data();
 Compiler.Asm.writeRootClass(Compiler.Asm,d); → Data(16630)
 z:=Import("zeelib").Compressor(); z.write(d); z.close();
 z.len(); → 7785
Very compressible – the Asm code compresses to about half its original size.

 141

Objects

Hmm, while we are here, we notice that ZeeLib also is a Stream. Let’s see what happens if we write to
it:
 z:=Import("zeelib").Compressor();
 Compiler.Asm.writeRootClass(Compiler.Asm,z); z.close();
 z.len(); → 7785
Wow! That is pretty cool. But, as someone famous once said: “Trust but verify”. So let’s blow that baby
back up and see what happens.
 i:=Import("zeelib").Inflator(); i.write(z.drain()); i.close();
 d2:=i.drain();
 d → Data(16615)
 d2 → Data(16615)
 d==d2 → True
So, indeed, the uncompressed bits are identical in both cases: if writeRootClass writes directly to a
Compressor or we compress a flattened class.

This example illustrates the advantages of a common Stream interface: the interchangeability of Stream
objects.

142 Data

Objects

Deferred

Inherits from: Object
See Also: Objects.Object.fp

Abstract
Deferred is an Object that is a deferred, or delayed, computation. It encapsulates the computation
(complete with parameters) until it needs to be evaluated.
When it is referenced, the computation is evaluated. A Deferred can be treated like any other object.

Deferred.noop() will force evaluation.

Deferreds are not thread safe. After a Deferred has been evaluated, it is thread safe (although the
underling object might not be).

A Deferred can also be a Partial (as in Partial [Function] Application). These objects fix one or more
parameters to the underling deferred object. Essentially a call in progress, waiting to be completed.

Methods
What a method does depends on whether or not the Deferred has been “created” or not. An
“embryonic” Deferred will create new Deferred objects, a created object will evaluate. An embryonic
Deferred will act like an ordinary object, not a Deferred. If created, these methods (excepting BaseClass)
will force evaluation and reference the result.

● BaseClass(name): Reference the underlying Deferred object.
d:=Deferred(String,"text"); d.toString() → “text”
d.BaseClass.toString() → “Deferred”
Throws: NotFoundError, NotImplementedError
Returns: Deferred.name

● create(object[,runTimeParameters]): Create a new Deferred object. Typical objects are
fcns and classes (eg Import). The second call to create will evaluate and call. Subsequent calls
will just call the result of the evaluation.
 fcn f(a){a+5} d:=Deferred(f,1); → Deferred
 d()+4 ≈ d+4→ f(1) + 4 → 10
From this point on, d will always be 6 and d+4 → 6+4 (f is no longer called). Note that d()+4 is
now 4 because d() is still a call: 6() → 6.create() → 0.
The new object will not be able to create new Deferred objects71.
Throws: TypeError
Returns: Deferred

● create([nargs]): Evaluate and call: result=f(runTimeParameters)(nargs)
Not overly useful as the result usually isn't a Deferred. For a Deferred.once, the result is always
the value of the first evaluation. This is for a deferred constant [expression].

● Deferred(5,6)(7) → Deferred(5.create(6))(7) → Deferred(6).create(7) → 7
● Deferred.once(5,6)(7) → 6

Throws: Possibly
Returns: Something

71 Unless you use BaseClass

 143

Objects

● once(f,[runTimeParameters]): Same as [the first] create: create a new Deferred object. The
only difference is in subsequent calls to create: there is no call to the underlying result, that result
is just returned.
 df:=Deferred.once(fcn f(x){x/2},10)
 df() → f(10) → 10/2 → 5, df() → 5, df(6) → 5,
 df+3 ≈ df()+3 → 8
Throws: TypeError
Returns: Deferred

● toBool(): Returns True if evaluated.
d:=Deferred(String,"text"); d.BaseClass.toBool() → False and d remains unevaluated.
d.toBool() → String("text") → "text".toBool() → True
This is useful for things like
if(deferred.BaseClass.toBool()) println("Evaluated"); since it doesn't force
evaluation. You can check if the Deferred was “triggered” without triggering it yourself.
Returns: Bool

● toString(): Returns “Deferred”. This doesn't always force evaluation. If called indirectly (eg
println(d)), it is not evaluated.
Returns: “Deferred”

Properties
All properties force evaluation and then return result.property unless you use BaseClass.

● f: Returns the object used in create or Void if has been evaluated (and isn't a Partial).
Returns: Object or Void

● isCooked: Has self been evaluated or is self a Partial?
Returns: Bool

● isPartial: Is self a Partial?
Returns: Bool

● value: Returns self.f if a Partial, otherwise, evaluates and returns the result.
Returns: Object

Operators
All operators force evaluation and then perform the operation on the result.

Discussion
There is typically one “embryonic” Deferred object (TheVault.Deferred), which is used to create all
other Deferred objects.

As a parameter
Passing a Deferred as a parameter does not force evaluation (obviously, as that would be eager
evaluation). As an example, to test if d is a Deferred, use Deferred.isType(d), not
d.isType(Deferred).

Evaluation
A Deferred is evaluated only once. After that, any reference is resolved against the result of that
evaluation. Any parameters that are required for evaluation must be part of the Deferred. For example, in
f=Deferred(fcn(n){n+1}), both f.noop() and f(4) will fail for lack of a parameter. But in

144 Deferred

Objects

f=Deferred(fcn(n){n+1},4); f.noop() evaluates to 5 and f(4) evaluates to 4: 5(4) → (5).create(4)
→ 4.

Typically, evaluation of a Deferred is a two step process: A reference is made to the expected result,
which forces evaluation, then the reference is resolved. Using Date=Deferred(Import,"Time.Date")72
as an example,

● The creation of the Deferred is split into two parts to keep eager evaluation from immediately
performing the import.

Date.prettyDay()
● The reference to prettyDay forces evaluation, which causes Import("Time.Date") to be run,

which returns the Time.Date class. From this point forward, any reference to Date will be to the
Time.Date class.

● Time.Date.prettyDay() is run, which returns “Monday, the 13th of September 2010”
● Mixins are convenient in this case as they tell the compiler how to do additional compile time

checking73:
var [mixin=Time.Date] Date=Deferred(Import,"Time.Date");
Date.pettyDay() → syntax error

If you don't know if an object is a Deferred or not, a safe way to force evaluation is to use d.noop(),
since it normally doesn't do anything but as it is a reference, it does force evaluation.

Nested
A Deferred can reside in a Deferred. Evaluation happens “all the way down”.
Deferred(Deferred(fcn{4})).noop() → Deferred(fcn{4}()) → Deferred(4) → 4

Dead Lock and Recursion
A Deferred can reference another Deferred and if that reference is circular, evaluation might dead lock,
so it isn't allowed. Likewise, recursive Deferreds are not allowed. This is detected at run time:

● var a=Deferred(fcn{b}), b=Deferred(a);
b.noop(); → AssertionError

● var a=Deferred(fcn{a}); a.noop() → AssertionError
● fcn f{ Deferred(f) } Deferred(f).noop() → AssertionError

A limited amount of recursion is allowed (but how much is undefined).

Deferred Function Variable Initialization
Initialization of function variables can be annoying because they are initialized before other variables in
the containing class. For example, if you wished to initialize a function variable to a BigNum, the
following doesn't work:
 var BigNum=Import("zklBigNum");
 fcn f{ var b=BigNum(5); }
Since b is initialized before BigNum is imported74, b is set to Void. One work around is to defer setting b
until it used:
 fcn f{ var b=Deferred(fcn{BigNum(5)}); }

72 Which could also be expressed as Import.defer("Time.Date") or
(Import : Deferred(_,"Time.Date"))

73 This adds no run time overhead but only works if Time.Date is available at compile time
74 See Keywords.var for why and how.

 145

Objects

The seemingly extraneous fcn is necessary to prevent eager evaluation of the BigNum variable75.

Example: Delayed Thread Launch
Sometimes, you want to maybe create a thread. One example is to create the thread if a Pipe is written
to.
class DeferredThread{
 fcn init{
 var [const] pipe=Thread.Pipe();
 returnClass(Deferred(fcn{self.launch(); pipe}));
 }
 fcn liftoff{
 println("Thread launched!");
 pipe.close();
 }
}
reg pipe=DeferredThread();
…
if (something()) pipe.write(x); // create thread
if (pipe.BaseClass.toBool()) // thread was created
 doSomethingWithPipe(pipe);
else pipe=Void; // thread not created
Note that if pipe is referenced, the thread will be created so be careful not to create it accidentally.

Closures, Partial Application
The Object methods fp* create closures76 of a runnable over a set of parameters (ie the parameters are
bound with/to the runnable). When the closure is called, the parameters in the closure call are appended
to the bound parameters. For example:
 fcn f(x,y){…} fc:=f.fp(1); fc(2) → f(1,2)
These closures can be “stacked”:
 fc1:=fcn f(x,y,z){…}.fp(1);
 fc2:=fc1.fp(2); fc3:=f2.fp(3);
 fc3() → fc2(3) → fc1(2,3) → f(1,2,3)

Partial.resolve works by looking at the underlying object, which is usually what you want. The .fp*
methods resolve to Object.fp* because that is also what you want (this makes stacking work). However,
this can be a problem and if it is, you'll need to be creative (BaseClass doesn't help you here). Note that
resolve “tunnels under” the closed over parameters to the underlying object, thus something like
fcn(n,a){println(vm.arglist)}.fp(3).reduce(0,1) won't see the 3.

See Objects.Object.fp.

Syntactic Sugar ('wrap)
Syntax: 'wrap(){…}, 'wrap(x,y,z){…}, ‘wrap{}
'wrap is used to create function closures over registers and parameters in the enclosing scope. It can
only be used as a parameter, or in assignment.

75 Another way to do this is to use fcn f{ var b=Import("zklBigNum")(5)} or use an initialization class (see
Keywords.var)

76 Probably more properly called Partial Application: http://en.wikipedia.org/wiki/Partial_application

146 Deferred

Objects

Functions can not access the registers and parameters in their enclosing environments (they do not have
lexical scope). Usually, this is easy to work around by using static parameters or .fp. However, it can be
annoying to type the same name three times:
 register:=5;
 L(1,2,3).apply(fcn(n,register){ n+register },register);
Using 'wrap, the compiler will do this work for you:
 register:=5; L(1,2,3).apply('wrap(n){ n+register });
These closures are not “leaky”; changing the closed over value does not change the original (you can
change the contents of containers). Variables are not closed as they are always accessible [inside a
function]. Default parameters are ignored.

Notes
● If you use recursion inside of a wrap, use vm.pasteArgs to pass the “invisible” closure data.
● Don't use the .fp methods with 'wrap; you won't know where second set of closed data is.
● Default parameters don't play well with 'wrap.

 147

Objects

Dictionary

Full name: [TheVault.]Dictionary
Inherits from: Object
See Also: Objects.Small Dictionary

Abstract
A dictionary is an array that is indexed by keys that are not numbers (although numbers can be used).
For example, if d is a dictionary, d[“1”] and d[2] specify two locations in d.

Virtually any object can be a dictionary key. Integer and Float keys are converted to Strings and that is
used as the key. So d[“1”] and d[1] refer to the same location but d[1.0] is a different location. If the key
doesn’t convert to a string, its id is used as the key.

Dictionaries are also known as hash tables.

Dictionaries are thread safe.

Methods
● add([key value pairs | List of key/value pairs]): Does a self[key] = value for each of

the parameter pairs.
For example, d.add("1",2,"3",4) does the same thing as d["1"]=2; d["3"]=4;
Throws: ValueError (odd number of parameters)
Returns: self

● appendV(key,value): Append value to the list associated with key. If key doesn't exist, it is
created with value List(value). If key:value exists and value isn't a List, nothing happens.
Returns: self

● appendKV(List(key,value)): Same as appendV(kv.xplode()).
Returns: self

● copy(): Make a copy of the dictionary and return it. All entries are duplicated.
Returns: Dictionary

● create([key value pairs | List of key/value pairs]): Creates a new Dictionary and
optionally adds data to it.
Dictionary(1,2, “three”,”four”) creates a Dictionary with keys “1” and “three” and values 2 and
“four”.

● To blow apart an HTTP query string into a dictionary77:
query:="GET /?value=50&action=Do+it HTTP/1.1";
query=query[query.index("?")+1,*]
 .split()[0].replace("+"," ");
→ “value=50&action=Do it”
query=query.split("&").apply("split","=");
→ L(L(“value”,“50”),L(“action”,“Do it”))
query=Dictionary(query); → D(action:“Do it”,value:“50”)

● Dictionary(L(L("key","value"),L(1,2))) → D(key:value,1:2)
See also: add, extend
Throws: ValueError

77 Well, sort of. Fields can have multiple values, be separated by “;” or “&” and be encoded.

148 Dictionary

Objects

Returns: The new Dictionary
● del(key): The same as pop except it returns self.

Throws: AssertionError (dictionary is read only)
Returns: self

● extend(Dictionary | List of key/value pairs): Add all the parameter entries to self. The
added entries are not copied.
Returns: self

● filter([f [,static parameters]]):
Push key/value pairs through a filter and return a list of those items that pass (f(kv).toBool()
is True).
Returns: ROList

● filter1([f [,static parameters]]):
Push key/value pairs through a filter and return the fist item that passes (f(kv).toBool() is
True).
Returns: False | object

● find(key,defaultValue=Void): Looks for self[key]
Returns: If key exists in self, self[key] is returned, else defaultValue is returned.

● get(key): Synonym for __sGet
Throws: NotFoundError if Dictionary doesn’t contain key.
Returns: The value stored at self[key].

● holds(key):
Returns: True if self[key] exists, else False.

● howza([mode]): Set the format that walker, pump, etc will receive.
mode Consumer will receive:

0 Key,value pairs
8 Keys
9 Values

Returns: mode (Int) or self
● incV(key): Increment the value associated with key. If key doesn't exist, it is created with value

1. If key:value exists and value isn't a Int, nothing happens.
Returns: self

● len(): The number of keys in the Dictionary.
Returns: Int

● makeReadOnly(): Freeze self. No further modifications are possible.
Returns: self

● pop(key,defaultValue=Void): Find and remove a key from the dictionary. If key isn't found,
defaultValue is returned.
Throws: AssertionError (dictionary is read only)
Returns: deleted value

● pump(sink[,action ...]): Another type of loop, similar to apply but with multiple actions.
The first action is passed List(key,value) as the parameter.
To “reverse” d (ie switch keys and values), this works (returning a new dictionary):
 d.pump(Dictionary(),"reverse")
See also: Notes on the pump method at the start of this chapter.
Returns: The last calculated value or a list of those values.

● reduce(f,initialValue [,parameters]): A feedback loop which feeds key/value pairs to f.

 149

Objects

To stop the loop, return(Void.Stop) or return(Void.Stop,result).
Returns: p

● __sGet(key): Implements self[key].
Throws: NotFoundError if Dictionary doesn’t contain key.
Returns: The value stored at self[key].

● __sSet(key,value): Implements self[key] = value
Throws:
Returns: value

● toBool(): Returns True if the dictionary contains any items.
Returns: Bool

● toDictionary():
Returns: self

● toList(): Converts the Dictionary to a list of (key,value) pairs.
Dictionary("key","value", 1,2).toList() → L(L("key","value"),L("1",2))
Returns: List of Lists

● toString(numItems=N): Returns a String that contains the contents of the Dictionary. For
example: Dictionary(1,2,3,4).toString() returns “D(1:2,3:4)”. NumItems controls the
number of items “stringized”. The default is implementation defined, * is all items.
Returns: String

● walker(n=0): Create a Walker that walks the key,value pairs.
n walker.next() returns
0 Key,value pairs
8 Keys
9 Values

For example:
 d:=Dictionary(1,2, 3,4);
 foreach k,v in (d)
 { println(k,":",v) } → “1:2” “3:4”
Note: Only read only Dictionaries support walkers.
Returns: Walker

● write([key value pairs | List of key/value pairs]): The same as add.
Throws: ValueError (odd number of parameters)
Returns: self

Properties
● keys: Returns a List of the Dictionary keys. The list is unordered. To get an ordered list, use

d.keys().sort();
Returns: List

● values: Returns a List of the Dictionary values. The list is unordered.
Returns: List

Operators: None

Acknowledgments
Dictionaries are based on dynamic hash tables as implemented by Esmond Pitt.

150 Dictionary

Objects

Exception

Full name: [TheVault.]Exception
Inherits from: Class
See also: Keywords.throw, Keywords.try/catch

Abstract
The Exception class contains the Exception base classes as well as a core set of reference exception
classes that are commonly encountered during programming.

All exceptions have to inherit from Exception.Exception or a child thereof.

You can throw any of the contained classes listed here, either the reference class or a new instance.

When creating your own exception classes, don’t inherit from Exception, inherit from one of the
contained classes, such as Exception.Exception, Exception.SyntaxError or Exception.KissOfDeath.

Use
To throw a reference class: throw(Exception.IndexError)
To throw a “customized” exception:
 throw(Exception.IndexError("Foo doesn’t have 5 entries"))
Read further for information on creating your own exceptions.

Contained classes
Base Classes
● Exception(): Inherits from Class

Catchable: Yes
Class Variables

● payload: User data.
● text: Text describing this exception.

Functions
● init(text="An Exception"): Create a new Exception and sets text.
● toString(): Returns descriptive text. For example:

Exception.toString() → “Exception(An Exception)”
Exception.TypeError.toString() → “TypeError(Invalid type)”

Discussion: The “generic” exception. Go ahead and throw an instance of this if nothing else fits
and you don’t want to create your own exception class.

● KissOfDeath(exception): Inherits from Exception.Exception
The base class for uncatchable exceptions.
Catchable: No
Class Variables

● theException: The exception that caused this exception to be thrown. Void for the
reference class.

● Exception.text: "Now is a good time to die"
Functions

 151

Objects

● init(exception): Create a new KissOfDeath and set theException to the Exception that
initiated this regrettable chain of events, or Void.

Discussion: You can throw this exception but you can't catch it.

Uncatchable Exceptions
● OSError(msg=Void): Inherits from Exception.KissOfDeath
● OutOfMemory(msg=Void): Inherits from Exception.KissOfDeath
● VMError(msg=Void): Inherits from Exception.KissOfDeath

Catchable Exceptions
● AsmError(msg=Void): Inherits from Exception.Exception

Indicates an assembler error, usually internal.
● AssertionError(msg=Void): Inherits from Exception.Exception

An assertion of some type has failed.
● BadDay(msg=Void): Inherits from Exception.Exception

A generic exception.
● CompilerError(msg=Void): Inherits from Exception.Exception

Indicates a compiler error, usually internal.
● FcnNotImplementedError(func): Inherits from Exception.Exception

This exception is useful when creating a virtual class or class with virtual functions. You can just
cut and paste the function templates.
Functions:

● init(f): The function f is used to create a message that means something. For example:
class C {
 fcn f {
 throw(Exception.FcnNotImplementedError(self.fcn));
 }
}
C.f() thows an Exception with the text set to
“Class(C) (or parent): Fcn(f) not implemented”

● Generic(msg=Void): Inherits from Exception.Exception
The most generic of generic exceptions.

● HeyYou(msg=Void): Inherits from Exception.Exception
Used to kick another thread.
See Also: Objects.vm.kick

● IndexError(msg=Void): Inherits from Exception.Exception
The index or subscript is out of range.

● IOError(msg=Void): Inherits from Exception.Exception
There has been an IO error, usually at the OS level.

● LoaderError(msg=Void): Inherits from Exception.Exception
The loader has problems. For example, if System.loadFile(“foo”) can’t find “foo”.

● MathError(msg=Void): Inherits from Exception.Excpetion
Things like divide by zero.

● MissingArg(msg=Void): Inherits from Exception.Excpetion
A requested parameter isn't there.

● Msg(payload): Inherits from Exception.Excpetion

152 Exception

Objects

Pass a message via an exception. For example, bailing of out a [nested] method and preserving a
result.

● NameError(msg=Void): Inherits from Exception.Exception
 Something is wrong with that name.

● NotFoundError(msg=Void): Inherits from Exception.Exception
Something, usually an object, was not found and it needed to be.

● NotImplementedError(msg=Void): Inherits from Exception.Exception
Homey don’t do that.

● PipeError(msg=Void): Inherits from Exception.Exception
Thread.Pipe has issues.

● StreamError(exception): Inherits from Exception
Used to indicate an error in a Stream class.
Class variables:

● throwed: This holds the exception that reflects the underlying error or Void.
● SyntaxError(errorMsg,badText,N=0): Inherits from Exception.Exception

Used big time by the compiler suite (Compiler, Parser, Asm, Tokenizer).
Error message is the a description of the syntax error, badText is the source code that caused the
syntax error and N is the line number the bad text can be found at.
Class Variables:

● lineNumber: N
● textWithError: badText

Examples:
● throw(Exception.SyntaxError("Can’t change foo",line));
● errormsg := "Can’t change %s".fmt(name);

text := "%d: %s".fmt(lineNumber,line);
throw(Exception.SyntaxError(errormsg,text,lineNumber));

● foo.bar might cause the compiler to throw
SyntaxError("Can't find \"foo\" (in foo.bar)").

● TheEnd(text): Inherits from Exception.Exception
Indicates the end of something has been reached, such as a sequence or stream. Thrown by
methods like read().

● Timeout(msg=Void): Inherits from Exception.Exception
The requested operation couldn’t be complete in the allotted amount of time.

● TypeError(msg=Void): Inherits from Exception.Exception
The supplied parameter is the wrong type. For example, if an object can’t be converted to the
type needed to complete a calculation.

● ValueError(msg=Void): Inherits from Exception.Exception
Type is OK, but the value isn’t. For example, if the allowed range is 0 to 5, a value of 10 might
generate this exception.

Functions
● init(text):

Since creating an instance of Exception doesn’t make a lot of sense and the instance would be
huge, init just returns an instance of Exception.Exception assuming that is what you meant
anyway.
Example: throw(Exception("Boom")) is the same as
throw(Exception.Exception("Boom")) and saves some typing.

 153

Objects

Returns: Exception.Exception(text)

Warning
● If you throw a reference class, don’t set the class variables, you’ll just screw it for up for

everybody else.
● Inheriting from Exception is disallowed, inherit from Exception.Exception instead. The reason is

Exception is a big class and contains all the reference classes and that can’t be what you want.
class MyError(Exception) // throws SyntaxError
class MyError(Exception.Exception) // OK

Discussion
Creating your own exception class is easy. Here is the usual case:
class MyException(Exception.Exception){
 const TEXT = "My error message";
 text = TEXT;
 fcn init(msg=TEXT) { Exception.init(msg); }
 // whatever else you would like
}
We create our exception this way so the reference exception has the message we want it to have:
 try{ throw(MyException)}
 catch(MyException){ println(__exception) }
 → MyException(My error message)
This is quick, easy and faster than creating a new instance. Of course,
throw(MyException("Phooey")) works just as well. Since constants are confined to the class they are
created in, TEXT won't “contaminate” any other code.

Saying that the uncatchable exceptions are uncatchable is not strictly true. You can catch them, but,
obviously, you shouldn't. The reason that they are catchable is so that things that HAVE to clean up after
themselves can and for test classes.

Runtime Exception Verification
The VM verifies, at runtime, that the thrown exception is valid; that is, the thrown exception must

● Be a child of the Exception class. If the copy the of Exception class in the Vault is replaced, even
with a copy of itself, you will no longer be able to throw a new exception.

● Text must be a string.

Payloads
Exceptions can be used for more than just signaling error conditions. They can also be used to break
across nested loops (see throw) or carry a payload to the catcher. Consider this contrived example:
try{ L(1,2,3,"stop",4,5).apply2(f) }
catch(Msg)
 { println("The payload is: ",__exception.payload); }
fcn f(x){
 if (x == "stop"){
 e:=Exception.Msg("The magic eight ball says \"Hi!\"");
 throw(e);
 }
 println("f(%s)".fmt(x));
}
 → f(1)

154 Exception

Objects

 f(2)
 f(3)
 The payload is: The magic eight ball says "Hi!"
The crux of the problem is: How do we communicate out-of-band information from within
apply/filter/walk/etc methods? Or any other deeply nested code? The apply method just goes, assuming
that the entire dataset needs attention. If your problem doesn't fit within these strict parameters, things
can get ugly fast. Exceptions with payloads adds flexibility to these methods without adding complexity
to the methods themselves.

 155

Objects

Fcn

Inherits from: Object
See also: Keywords.fcn,

 Objects.VM.[arglist, argsMatch, nthArg, numArgs, pasteArgs]

Abstract
Functions are the containers that hold the program code you write to do something.

Fcn is the base class for all functions.

Functions are bound to a Class instance and will always refer to that instance when it needs to reference
class variables, other functions, parents, etc.

Methods
● copy()

Returns: self
● defer([parameters]): Returns Deferred(self,parameters).

Returns: Deferred
● future(parameters): Create a new thread running self and return a result. Using the result

blocks until the thread has finished running.
r:=fcn{123}.future(); println(r+1); prints “124” when the thread is done. This is useful
when you want to do multiple things concurrently but don't want to manage them.
 rocket:=Rocket().build.future();
 prepLaunchPad(); // build rocket & launch pad concurrently
 rocket.fire(); // launch when both are ready
If things are more complicated and you have to get approval before launching:
 launchSite:=T(Rocket().build.future(),
 prepLaunchPad.future());
 launchSite.apply2("noop"); // wait for futures to arrive
 passInspection(launchSite); // get both inspected
 launchSite[0].fire(); // launch when approved
This is a form of a data flow variable.
Futures can be lazy: r:=Deferred(f.future) (or f.future.defer()) doesn't create the thread
until r is used.
.noop() can be used to “join” a future (ie wait for it to arrive).
Here is a poorly written parallel quick sort78:
 fcn pqsort(list){ // parallel quick sort
 if (not list) return(list);
 pivot:=list[0]; rest:=list[1,*];
 left,right:=rest.filter22('<),pivot);
 T.extend(self.fcn.future(left).noop(),
 pivot, self.fcn.future(right).noop());
 }
See also: launch, strand
Throws: If the thread does.
Returns: future (a Deferred)

78 Very inefficient and uses way too many threads. The performance is truly abysmal.

156 Fcn

Objects

● isInstanceOf(f [,f …]): Returns True if f is the same function as self. “Same” is loosely
defined; two functions that have different class instances (and different ids) are considered equal.
Returns: Bool

● launch(parameters): Creates a new thread running self.
fcn(s){ println(s) }.launch("Hello world") prints “Hello world” from a new thread and
exits. A handy use of launch is to load and run something in the “background”:
fcn{ Import("something") }.launch()
Example: Spin a star like “I’m doing something” thing:
 fcn spin{ // a thread that displays the spinner
 try{
 foreach n,rod in ((1).MAX, "\\|/"){
 print(" ",rod,"\r");
 Atomic.sleep(0.25);
 }
 }catch{} // don't complain about the
 // exception that stops thread
 }
 // main body of code
 spinner:=spin.launch(); // start spinner thread,
 // returns reference to thread
 Atomic.sleep(10); // do stuff
 // stop thread by throwing exception at it
 vm.kick(spinner.value);
See also: Objects.Class.launch, future
Returns: Ref(Void) and after thread starts Ref(VM), which is the thread.

● strand(parameters): Create a cooperative thread running self and return a future. Strands79 are
light weight “green” threads. They are pre-emptive unless they call a blocking method, in which
case they can block all strands. It is usually a bad idea for a Strand to create strand futures (as
using the future can deadlock).
A Strand can give up its time slice by calling yield (which doesn't set the future).
See also: future, launch
Throws: Yes
Returns: future (a Deferred)

● stranded(key,parameters): Create, or add to, a group of Strands, ie worker strands, strands
that communicate via pipes or strands you track with other methods.
Use like so:
 key=self.fcn.stranded(Void); // function does NOT run
 f.stranded(key,x,y,z); // create one or more Strands
 …
 key[0].waitFor(0); // wait for Strands to finish or
 // Atomic.waitFor(fcn(key){ key[0]==0 or key[1] }.fp(key));

● If any of the strands throws, the exception is stashed in key[1]. All strands [in the group]
will stop running if this occurs.

● You can stop all the strands in the group by setting the exception: key[1]=True.
● The key count is the number of Strands currently running; if another process is adding

strands (such a Strand), the count may go to zero before the group is actually done80. The
count is only good when you know that all strands have been added to the group.

79 Strands are built with fibers and use one or more threads to run them.
80 For example, a parallel quick sort.

 157

Objects

Returns: Key (List(Atomic.Int, Exception | Void))
● toBool():

Returns: True
● toString(): Returns “Fcn(name)”

Returns: String
● unasm(outputStream=Console): Disassemble self and write the results to outputStream.

Examples:
 Utils.range.unasm() → Console
 self.fcn.unasm(L()) → List
 f.unasm(File("f.txt","w")) → File
Returns: outputSream

Methods for Function Creation (used by compilers and loaders):
● build(names,Asm.Code,defaultArgs=Void,private=False):

Create a function that can be added to a class embryo.
Parameter Value
names A list containing the function name followed by the names of

each parameter (in order). For example, the names for fcn
f(a,b,c) is L(“f”,”a”,”b”,”c”). The number of parameters is
calculated from this list.

Asm.Code The machine code for this function. This is a class
(Objects.Compiler.Asm.Code).

defaultArg
s

If Void, no defaults. Otherwise, it is a list of Void or
Asm.Code objects. Again, Void if that parameter doesn't have
a default. The list has to be the same length as the number of
parameters.

private True if the function should be marked private. Private means
that, when this function is added to a class, class.resolve
won't find it. Among other things, it won't be found with late
binding.

The container property is set to NullClass.
A function is not runnable until it has been added to a class (which sets the container property).
Unless it is a static function.
See also: Objects.Class.addFcn, Objects.Class.embryo.
Throws: TypeError, ValueError
Returns: Fcn

Properties
● attributes: Returns a space separated list of attributes. Attribute names are “static” and

“private”.
Returns: String

● code: Returns the machine code for this function.
Returns: Asm.Code Class

● container: The class that this function is bound to.
Returns: Class

● defaultArgs: Returns the machine code for the parameters. If there is no default for a
parameter, Void is returned.

158 Fcn

Objects

Returns: List of Void or Asm.code
● fullName: Returns “instanceName.name”. For example, self.fcn.fullName might return

“RootClass#.__constructor”.
Returns: String

● idFcn: Returns fcn idFcn(x){ return(x) }
Note: The idFcn is runnable.
Returns: Fcn(idFcn)

● isPrivate: Returns True is self was created private.
Returns: Bool

● isRunnable: Returns True is self can run. Functions that have not been added to a class may not
be runnable, static functions always are.
Returns: Bool

● isStatic: Returns True is self was created static. Static functions do NOT reference any
instance data (but can have side effects). A static function is always runnable. The assembler
makes the call about static-ness.
Class static-ness has no effect on function static-ness.
Returns: Bool

● name: Returns “Fcn(name)”
Returns: String

● nullFcn: Returns a function that does just about nothing except return its class instance, which is
usually the NullClass. It can be used as a class constructor. This one is bound to the NullClass
but will change when Class.addFcn makes a copy and adds it.
Warning: The nullFcn is not runnable until it has been added to a class.
Returns: Fcn(nullFcn)

● prototype: Returns a list of the names of the parameters.
Returns: Read-only list of Strings.

Operators: None

Discussion

Instance Variables
If you use “var” in a function, you are probably going to be surprised – these variables last the lifetime
of the function, which is the life time of the class the function is in81. This is very unlike a function
variable (automatics) in a language such as C, where the life time is as long as the function is running
(use reg if you want that behavior). You can think of vars as “static” (or state) vars, they don't revert to
their old values as the a recursive function unwinds.
When you initialize a function variable as part of “var”, that initialization is moved to the class
constructor, thus the variable is reset to it's initial value each time a new class instance is created.
 fcn f{ var v=5; v+=1 } do(3){ print(f()," ") } → 6 7 8
You can not access function variables or registers from outside a function (the init function is special,
see Keywords.var).
“reg” variables act like C automatics.

81 And in fact, fcn variables are just syntactic sugar for anonymous class variables.

 159

Objects

Thread Safety

Functions are thread safe (re-entrant) by design. However, that goes out the window when a function
refers to a global resource (that is, a resource outside the function, such as a instance variable in the
enclosing class OR a function instance variable).This can be most inconvenient. Consider:
 class C{ var cv;
 fcn f(x)
 { x==cv } // not thread safe, cv is a global resource
 }

The next case is not so clear:
 fcn f(list,nm){ var x; x=nm;
 duplicates:=list.filter(fcn(y){ x==y });
 }
First, transform this as the compiler does (functions don't actually contain functions or variables):
 var x;
 fcn f(list,nm){ x=nm; duplicates:=list.filter(g); }
 fcn g(y){ x==y }
We see that the filter function (g) actually refers to a class variable, which is essentially global. If
multiple threads were to call f at the same time, g would get confused (because f.x is changing out from
under it). This also shows why anonymous functions can't refer to parameters in their parent functions:
they aren't actually part of their parent functions; they are in a different scope.
If you have to use a var, the solution is to use locks:
 fcn f(list,nm){
 critical{
 var x; x=nm;
 duplicates:=list.filter(fcn(y){ x==y });
 return(duplicates);
 }
 }
However, an much better solution is to rethink the problem and get rid of variables:
 fcn f(list,nm){
 duplicates:=list.filter(fcn(y,x){ x==y },nm);
 }
Which can be shortened to:
 fcn f(list,nm){ list.filter('==,nm); }
Remember that registers are always thread safe.

Function Creation

We’ll create two simple functions to give you an idea of what the compiler does to create a function.
This isn’t something you’ll want to do very often or at all. If you want to create functions “on the fly”, it
is usually much easier to use the compiler to compile up a snippet of source code
(Compiler.Compiler.compileText(src)).

Warnings
● The VM really wants functions to reside in a class. To have been added to its containing class,

not just having its container set. Building a function and having it sit around is fine, but running
the function is not and the VM may refuse to run a function that hasn't been added to a class.

● Except if the function is static. Static functions don't need to be in a class and are always
runnable.

160 Fcn

Objects

● If the function code refers to class data (eg variables), it had better be correct and in sync with
the class embryo. Otherwise, data corruption and VM crashes will result.

Function Creation: First example: fcn f{ println("Hello World!"); }
Since this is a function that is completely self contained, it is a static function82 and doesn't need to be
stored in a Class, which makes things simpler.
Step one, we need the parts that are used to build the function. The hard part, by far, is the code. So let’s
cheat and use existing code:
 fcn f{ println("Hello World!") }
 code:=f.code; → Class(__Code#)
Now we can create the function:
 e:=self.fcn.build(// any function can build a function
 T("f"), // named "f", no parameters
 code); // code, no defaults, not private
 → Fcn(f)
We are actually done! Since this simple function has no parameters and no variables, we don’t have
anything to add. Let’s test:
 e() → “Hello World!”
Nice!

Function Creation: Second example: fcn f(n){ return(n + 123); }
This time, we use machine code but we’ll still let the compiler generate code and we’ll copy it.
 fcn f(n){ return(n + 123); }.unasm() →

Fcn: f [static] (class: Cmd)
Prototype: L("n")
Code for default arg 0:
 No default
Code (code: 7 bytes, strings: 0 bytes)
 0:210 arg0
 1:100 push
 2:203 IntB(123)
 4:102 setX/pop
 5: 70 add
 6: 0 done

First, let’s create the function code. Each line of code is separated by a newline (or we could use a list)83:
 src:="argN(0)\n" // parameter 0==n
 "push\n" // push n onto the stack
 "Int(123)\n" // create integer
 "setX/pop\n" // put 123 into the X register
 // and pop n to the R register
 "add\n" // R=R + X==n + X
 "done\n"; // all done, return R
Assemble the code:
 code:=Compiler.Asm.asm(src); → Class(__Code#)84

82 Use the isStatic property to verify this: f.isStatic → True
83 Our code is slightly different because the assembler optimizes to produce smaller code; our manual code is more general

and a little less prone to errors. We could use the original code verbatim however.
84 If you want to disassemble a Asm.Code class, use code.unasm() or Compiler.Asm.disCode(f.code)

 161

Objects

Now, create the function:
 f:=self.fcn.build(L("f","x"),code); // fcn f(x)
Does it work? f(5) → 128
Yes!

Function Creation: Third Example: A Class
To beat this horse some more, and to give one more example than promised, let’s look at an example
where the instance is really important:
 class C{
 var N=5;
 fcn f(n){ return(N + n); }
 }
In this case, the function has to access N, a variable in its class instance. And, since f references instance
data, it can't be static.
I’ll skip over the “how” of where the code comes from, but, as a hint, classes also support the “unasm”
method.
First, create a Class embryo with two functions (“__constructor” and “f”) and one variable:
classC:=self.embryo(L("C","","N"),2,0,0);
The function code for __constructor:
 constructorSrc :=

"Int(5)\n" // int 5
"setVar(0)\n" // set instance variable 0
"self\n" // return self
"done\n";

Create the constructor:
 cf:=self.fcn.build(L("__constructor"),

 Compiler.Asm.asm(constructorSrc));
and add it to the class: classC.addFcn(cf,0);
Now, repeat for function f:
 fSrc:="argN(0)\n" // R=first parameter (n)

 "setX\n" // X=n
 "getVar(0)\n" // R=first instance variable (N)
 "add\n" // R=R + X==N + n
 "done\n"; // return R

 ff:=self.fcn.build(L("f","n"),Compiler.Asm.asm(fSrc));
 classC.addFcn(ff,1);

Now, finish up, run the constructor and test:
 classC=classC.cook();
 classC.__constructor(); classC.f(10) → 15
Or: classC().f(15) → 20

162 Fcn

Objects

File

Full name: [TheVault.]File
Inherits from: Stream, Object

Abstract
The File object knows about files stored on mass storage devices.

Methods
● ask(): Same as readln.
● close(): Flush the file and close it. When writing to a file, the contents might not make it to the

media until the file is flushed or closed.
Once a File object has been closed, you can not read from it, write to it or reopen it. You can, of
course, recreate a new File pointing at the same file.
When a File is garbage collected, close is called85.
Throws:
Returns: self

● create(filename,mode="r"): See open.
Throws: IOError, NameError
Returns: File

● flush(): Send all in-memory data to media.
Throws:
Returns: self

● howza(): Return the current value.
Returns: Int

● howza([int]): Howza determines the default way data streams out of File (by filter, pump,
reduce and walker). The initial value is 1 (lines).
See walker for values.
Returns: self or Int

● info(): Returns information about the file opened by open.
● info(fileName): Returns information about a file.

Returns the file size (same as len()), file last status change time and the last modification time.
The times can be converted to time and date with Time.Clock.tickToTock and back with
Time.Clock.mktime.
Throws: NameError, IOError
Returns: List(file size, creation time, last modification time, True if a directory)

● len(): Returns the number of bytes in the file opened by open.
● len(fileName): Returns the number of bytes in file.

Note that if you read the file, you might get a different number of bytes. This is because text files
may have their line terminators changed (Windows mostly).
Throws: NameError, IOError
Returns: Int

● open(filename,mode="r"): Open a file.

85 Which means you don’t (usually) need to explicitly call close(). But that can be considered bad practice. Especially if you
re-open the file later as then you could be “competing” with the garbage collector (over a global resource); GC might
flush a file buffer on top of you.

 163

Objects

Mode is whatever C’s fopen supports:

Mode Action
“r” Open a text file for reading. Might do “text file” end of

line conversions.
“rb” Open a file in binary mode.
“w” Create text file for writing. If file exists, it is cleared.
“wb” Create file in binary mode.
“a”, “ab” Open or create [text] file for appending.
“r+”, “r+b” Open [text] file for update: reading and writing
“w+”, “w+b” Create binary file for update.
“a+”, “a+b” Open or create a file for appending and updating

Both forward (“Dir/foo.txt” and back slashes (“Dir\\foo.txt”) work on Windows but remember to
quote back slashes in constants or use raw strings (0'|Dir\foo.txt|).
Throws: IOError, NameError
Returns: File

● print(string, …): Same as writeln without the newline
● printpn(string, …): Same as writeln.
● read(), read(*): Read the entire file (starting from last read)
● read(numBytes): Read up to numBytes from file.
● read(numBytes|*,data): Read into a user created Data

Read bytes from a file into a Data.
d:=Data(N); f.read(M,d); reads min(f.size,N,M) bytes into d (overwriting). Note that N is
just a hint to Data.create so it may actually be different.
Returns: Data

● read(numBytes|*,data,throw=True): Same as above, except TheEnd isn’t thrown if throw is
False.
This is for loops like:

out,f,buf := Sink(String), File("forth.blk","rb"), Data(1024);
while(blk:=f.read(1024,buf,False)){
 blk.walker(3).chunk(64,String).pump(out,"strip",'+("\n"));
}
// blk is empty here. Without throw==False,
// TheEnd would have been thrown

Returns: Data
● read1(): Read one byte.

Throws: TheEnd, IOError
Returns: Int

● readln(): Read one line and return it as a string.
● readln(*): Read the entire file into a list.
● readln(numLines): Read up to numLines and return them in a list.

● If numLines is <= 0, returns L().
● If numLines can’t be read (because there aren’t that many lines left in the file), as many

as can be read are returned.
Comments

● If no lines can be read (because we are at the end of the file), TheEnd is thrown.

164 File

Objects

● If a line ends with a newline, it stays with the line. The last line in a file is the one that
might not end with a newline.

Throws: TheEnd, ValueError
Returns: List, String

● toBool(): Returns True if self is connected to an open file.
Returns: Bool

● toString(): Returns “File(fileName)”
Throws:
Returns: String

● walker(): Returns a Stream Walker using readln. This allows you to iterate over a file line by
line. The following prints each line in a file, one line at a time:
 foreach line in (File("foo.txt")){ println(line); }

● walker(n=1):
n walker.next() returns
0 Int (one byte)
1 String, one line at a time using readln
2 Same as 1
3 String, one character at a time.
11 Same as 1 plus white space stripped from right side
12 Same as 11

Returns: Walker
● write(data, …): Write data to a file (assuming it has been opened for writing). The total

number of bytes written is returned. The following data types are supported:

Object Action
Data Write all bytes in data
Int Write the integer as a byte stream. Endianess is undefined and

may change from computer to computer.
List Recursively writes the list contents. If the list is circular, the

recursion is infinite.
String Write the string bytes, excluding the trailing \0

Throws: TypeError
Returns: Int

● writeln(string, …): Write one or more strings to the file. A newline (or carriage return and
newline) is appended after the last string is written. If a parameter isn’t a string, it is converted to
one, if possible.
The following shows a difference between write and writeln:
 f:=File("foo.txt","w");
 d:=L("one","two");
 f.writeln(d); f.write(d);
 f.close();
Contents of foo.txt:
 L("one","two")
 onetwo
Returns: self

 165

Objects

Utility Methods

● delete(fileName): Delete the file named filename.
Throws: IOError
Returns: Bool

● exists(fileName): Checks to see if fileName is the name of a “regular” file.
Returns: Bool

● filter([f [,static parameters]]):
Stream the file through a filter and return a list of those things that pass (f(line).toBool() is
True).
howza determines how the file contents are streamed.
Returns: ROList

● glob(wildCardPattern,flags=0): Match file names.
● glob(Data,flags=0): See next entry.

The pattern is the same as used by UNIX shells:

Pattern Matches
\x Turns off the special meaning of x and matches it directly; this is

used mostly before a question mark or asterisk, and has no
special meaning inside square brackets.

? Matches any single character.
* Matches any sequence of zero or more characters.
[x...y]
[x-y]
[x-y-]
[-...]
[]]
[]x...y]
[]-]
[]x-]

Matches any single character specified by the set x...y, where any
character other than dash or close bracket may appear in the set.
Exceptions: “]” can be the first character in the set and “-” can be
the last, if you use both. Otherwise, either can be first.
“[“ is not special inside the set, so “[[]” and “[a-z[]” will match
“[“
A dash may be used to indicate a range of characters. That is,
[0-5abc] is shorthand for [012345abc]. More than one range may
appear inside a character set; [0-9a-zA-Z._] matches almost all of
the legal characters for a host name.
[-], [x...y-] and [-a-z] all match “-”. [[-]], []-a-z] are undefined.
[\] matches “\”.

[^x...y]
[^]]

This matches any character not in the set x...y, which is
interpreted as described above. ^ is only special as the first
character.

Examples:
● Match all files with “.txt” extension: “*.txt”
● Match all C files that start with “t” in the VM directory:

File.glob("VM/t*.c") → L("VM/thread.c","VM/typeTable.c")
● File.glob(*) is the same as File.glob("*") and matches all files in the current

directory.
● Directories are indicated with a trailing “/”:

File.glob(*) → L("Bin/","Src/","Tests/","testThemAll.log","VM/")
● Windows understands “/” but if you want to use back slashes (“\”), use raw strings:

File.glob(0'|VM*.c|) to keep back slash from quoting the next character (in this

166 File

Objects

case, the pattern would become “VM*.c”). Or double quote (“VM*.c”) or concatenate
(0'|VM\| “*.c”).

● glob(”/”) always produces “/”.
● glob does inline expansions. For example, File.glob(”[ST]*”,0x10) might produce

L("Src/","Tests/","Tmp/") and File.glob("[ST]*/T*/*.zkl") might produce
L("Src/Test/testThemAll.zkl", "Src/Time/date.zkl").

The flags. Flag constants are in zkl.h.zkl. They can be combined.

Flag Meaning
FILE.GLOB.
ONLY_ONE (1)

Return the first match.

FILE.GLOB.
NO_PATH (2)

Don't prepend any path information to the
matched file name.

FILE.GLOB.
NO_TRAILING_SLASH
 (4)

Don't add a trailing slash to matched
directories.
“/” still yields “/”.

FILE.GLOB.
NO_DIRS (8)

Don't match directories.

FILE.GLOB.
ONLY_DIRS (0x10)

Only match directories.

FILE.GLOB.
IGNORE_CASE (0x20)

Unix only (Windows always ignores case).
Case is ignored when doing wild card
expansions.
ONLY the name segments that contain \, ?, *, [
or] case fold. For example, in “Src/foo\\.zkl”,
“Src” has to be exact but “foo.zkl” folds.

This method uses the “wildmat” pattern matching code written by Rich $alz.
Throws:
Returns: List of file/directory names.

● glob(Data,flags=0): As above, only the Data holds a list of patterns.
Concisely: Data(0,String,"p1","p2","p3"…), and what matches is (p1 and (p2 or p3 …)).
First glob(p1) and then one of p2 or p2 … has to glob. P1 matches path and name, pn just match
names.
So, to get all music files in the current directory:
 File.glob(Data(0,String,
 "*","*.mp3","*.wma","*.ogg"),0x20)

● globular(startingDirectory, wildCardPattern, recurse=True,
flags=FILE.GLOB.NO_DIRS, out=Data(0,String)): Match file names.
Basically a recursive (or not) glob. Starting at startingDirectory (which can be a pattern that
matches more than one directory), finds all the files that match the pattern and glob flags. As the
files are found, they are fed to out. See Objects.Sink for what out can be (Sink.write(out) is
called). out is closed.
Examples:

● To get all the zkl files under the Src directory:
File.globular("Src","*.zkl")
File.globular("Src","*.zkl").toList()

● To get the above as a list:

 167

Objects

File.globular("Src","*.zkl",True,8,L())
● To find all the directories in, and below, the current directory:

File.globular(".","*",1,0x10)
● A slightly more refined example: File.globular("[LZ]*","*",0,0x10,L()) →

L("LZO/Release/", "ZeeLib/Debug/", "ZeeLib/Release/") as the starting directories
evaluate to L("LZO/", "ZeeLib/") (which you can evaluate with
File.glob("[LZ]*",0x10)).

● File.globular(".","*.c") writes the names of all C files under the current directory
to a Data (null terminated) and returns the Data. You can look at this with reduce or
foreach.

● pipe:=Thread.Pipe(); givePipeToThread(pipe);
File.globular(".","*.c",True,0,pipe) each of the matching C file names is written
to the pipe. This is handy if you want to find files in this thread and process them in
another thread.

● Post process: globular(…,fcn(name){ }). Calls a Fcn/Method for each match.
Eg File.globular(".","z*h",False,0,
 fcn(nm){ println(nm) })

Returns: What Sink(out).close() returns
● info(fileName): Returns info about a file. See info in the Methods section.
● isDir(directoryName): Checks to see if directoryName is the name of a directory.

Returns: Bool
● len(fileName): Returns the number of bytes in file. See len in the section above.
● mkdir(path [,permissions=777 (octal)]): Make a directory.

Throws: IOError
Returns: True (directory created), False (path exists, might not be a directory)

● mkdir_p(path,verbose=False): Make all directories in path.
Throws: IOError
Returns: True

● mktmp(): Make a file in a “safe” way. The name starts with “zklTmpFile”.
See Also: System.popen
Throws: IOError
Returns: File

● pump(sink[,action ...]):
Another type of loop, similar to apply but with multiple actions. The calls are r=a1(readln());
r=a2(r); r=a3(r) …
An example: Given a CSV file that looks like:
 02/12/13,11:59 AM,139,75,50,,,
 02/12/13,06:30 PM,133,78,46,,,
that needs to be read into a list that looks like:
 L(L("02/12/13",11.98,"139","75","50","\n"),
 L("02/12/13",18.50,"133","78","46","\n")
(a list of lines with the time converted to a float), this works:
 csv:=File.open("in.csv","r").pump(List,
 fcn(a){a.split(",").filter()}, //line to list
 fcn([(_,t)]v){v.set(1, //modify time: t:=v[1]
 Time.Date.parseTime(t) : //text to (H,M,S)
 Time.Date.toFloat((_).xplode())) }); // to float

168 File

Objects

If a file to file conversion (ie write results to a file) is desired, use the write method as the last
action. For example, to uppercase a file:
 File("in.txt")
 .pump(Void,"toUpper",File("out.txt","w").write)

● pump(Data([N]),sink[,action ...]): Use Data a reusable buffer.
Does NOT drop nulls.

● pump(N,action [, ...]): Create an internal Data buffer of size N.
If Data() is used, it signifies use the read method, ie read bytes into a Data and pass that to the
actions. This can be useful if you are copying lots of files and want to minimize allocations.
Note: The Data is used as buffer and is reused [after running all the actions]. So, if you store the
data, be sure to make a copy.
Note: .pump(Data(),...) is different from .pump(Data,...)! In the latter case, a new Data is
created to be used as the sink, ie it is the same as .pump(Data().write,...).
For example, to copy one file to another, you could use:
 fin,fout:=File(srcName,"rb"), File(dstName,"wb");
 fin.pump(Data(0d524_287),fout); fin.close(); fout.close();
Using the upper case example:
 File("in.txt").pump(Data(1000),
 File("out.txt","w"),"text","toUpper")
Note: If you actually want a Data as the sink, use .pump(Data,...) or
d:=Data(); file.pump(d.write,...)

N is basically the Data example but with a fixed size read (since Data creation uses the size only
as a hint).

howza determines how the file contents are streamed.

See also: Notes on the pump method at the start of this chapter.
Returns: The last calculated value or a list of those values.

● reduce(f,initialValue=self.readln() [,parameters]): A feedback loop which runs f
until the end of the file is reached. The calls are:
 p:=initialValue;
 p=f(p,self.readln(),parameters);
 p=f(p,self.readln(),parameters);
 …
To stop the loop, return(Void.Stop) or return(Void.Stop,result).
To print a file with line numbers:
 File("data.c","r").reduce(fcn(n,line)
 {print("%d: %s".fmt(n,line)); n+1},1)
 →
 1: /* data.c : the Data object : A container of bytes
 2: * Supports both Stream and Sequence semantics
 3: * Acts as a bunch of strings, lines or just a jumble of bytes.
 …
Find the length of the longest line in a file:
 File("foo.txt").reduce(
 fcn(len,line){line.len().max(len)},0)
howza determines how the file contents are streamed.
Returns: p

 169

Objects

● rename(oldPath,newPath): Rename/move a file or directory.
Throws: IOError
Returns: True

● searchFor(filename, pathList=System.classPath, globIt=False):
Look for a file (first, see if fileName exists), and, if it doesn't, search for it along a list of paths
(use T for no paths). Optionally, fileName can contain glob wild cards (if globIt is an integer
(zero for the default glob)).
Returns Void if not found, otherwise a name that can be used in open.

For example, searchFor("compiler.zkl") might return Void because the Compiler directory
isn’t on the classPath but searchFor("Compiler/compiler.zkl") would return
“C:/ZKL/Src/Compiler/compiler.zkl” because “C:/ZKL/Src” is. Likewise,
searchFor("compiler.zkl",L("C:/ZKL/Src/Compiler"))finds the file.
If globIt is an integer, it turns on wild card matching and globIt is used as the glob flags (which
are ORed with FILE.GLOB.NO_DIRS and FILE.GLOB.ONLY_ONE). To use just these
defaults, use a globIt of 0. searchFor("C*/Compiler.z*", System.classPath,
FILE.GLOB.IGNORE_CASE) will find “Compiler/compiler.zsc” or “Compiler/compiler.zkl” since
both are on the class path (ignore case is only needed on Unix systems, Windows always ignores
case in file names). A wild card in a chunk triggers glob matching for that chunk, matching is per
file element (ie the chunk between slashes has to have a wild character).
Returns: String, Void

● setModTime(name,time_t): Set the modification time on a file.
See also: info, Time.Clock.mktime
Returns: Bool

● splitFileName(fileName): Split a file name into parts:
Behaves differently on Unix and Windows (Unix doesn’t have drive, set to “”).
Assumes the file name is valid (eg from glob).

[0] Drive or locator “”, “C:” (Windows), “\\NAS”
[1] Path “”, “/”, “/Dir/”
[2] File name (exclusive of extension) “foo”, “” (eg "ZKL/")
[3] Extension “.txt”, “”

Examples:
◦ "fred.txt" → L("","","fred",".txt")
◦ "fred" → L("","","fred","")
◦ "foo/fred.txt" → L("","foo/","fred",".txt")
◦ "foo/./fred.txt" → L("","foo/","fred",".txt")
◦ "foo/." → L("","foo/",".","")
◦ "../foo/../fred.txt"→L("","../foo/../","fred",".txt")
Throws: IOError
Returns: List of Strings

Properties
● eof: Returns True if the open file is at End of File.

Throws: IOError
● fileName: Returns the name of the file.

Returns: String

170 File

Objects

● stderr: The standard error file. Usually Console but can be redirected with the normal command
line controls.

● stdin: The standard input file. You can read this but not close or write to it. Usually Console but
can be redirected with the normal command line controls.

● stdout: The standard output file. Usually Console but can be redirected with the normal
command line controls.

Discussion

Tricks
If you are given a list of file name patterns (eg “*.[ch]”) and want to expand that into a single list of file
names, you can use:
 names.reduce(
 fcn(list,name){ list.extend(File.glob(name)); }, L());
For example, names=L("*.[ch]") might expand to L("allocate.c", "memory.h", "void.c").

Since files are closed when they are garbage collected, you usually don't need to manually close them.
However, you don't know when that will actually occur. You can ensure a file is closed by using
critical. For example:
 var file=File("foo.txt","r");
 critical(file,noop,close){
 while(1) {file.readln().print()}
 }
will read from foo.txt until the end of the file is reached (which throws TheEnd) and then close the file.
OnExitBlock can also do this.

File.DevNull

Full name: [TheVault.]File.DevNull
Inherits from: Stream
See Also: Objects.Thread.DrainPipe

Abstract
A helper class. Use this if you want a “no nothing” file or console stub

Discussion
If you are optionally writing to a stream (such as a log file), you don't want to always test to see if you
should or should not write to the stream:
 var logFile;
 if (loggingTurnedOn) logFile=File(name,"w");
 if (loggingTurnedOn) logFile.writeln("This is too much work");
Instead, you can stub the log file, set it to the real file if you are logging to file and pretend you are
always logging to a file:
 var logFile=File.DevNull();
 if (loggingTurnedOn) logFile=File(name,"w");
 logfile.writeln("Much better");

 171

Objects

Float

Inherits from: Object

Abstract
Floating point numbers. Floats are immutable, that is, they don’t change. You “change” them by creating
new ones (usually indirectly).

The compiler recognizes the following format for float constants (from Microsoft Visual C++
documentation):

[-] [digits] [.digits] [e | E [-] digits]
Digits are one or more decimal digits. If no digits appear before the decimal point, at least one
must appear after the decimal point. The decimal digits may be followed by an exponent, which
consists of an introductory letter (e, or E) and an optionally signed decimal integer.

In additon, “_” can be used as a separator: 1_234.5 == 1234.5

Terms
● Value refers to the numeric value of self.

Methods
● abs(): Returns the absolute value of value.

Returns: Float(abs(value))
● ceil(): Returns the smallest integral value not less than value.

Returns: ⌈value ⌉
● clamp(min,max): Returns the closest value in the range [min,max].

Returns: Float
● closeTo(n,tolerence): Returns ((value-n).abs() <= tolerance). Yes, the sign of

tolerance matters.
Returns: Bool

● copy():Returns self. Since Floats are immutable, self is equivalent to a copy.
Returns: self

● create(x=self): Create a Float with value set to x.
Returns: Float

● floor(): Returns the largest integral value not greater than value.
Returns: ⌊value ⌋

● hypot(x): Calculate the hypotenuse of a right triangle where the two right angle legs are value
and x.
Returns: √value2+x 2

● max(ints or floats): Returns the maximum of self and the parameters.
Returns: Float

● max(list): Returns the maximum of the contents of the list.
Returns: Float

● min(ints or floats): Returns the minimum of self and the parameters.
Returns: Float

● min(list): Returns the minimum of the contents of the list.
Returns: Float

172 Float

Objects

● pow(x): valuef

x is a float (either explicitly or by conversion).
Error if:

● value==0.0 and x≤0
● value<0.0 and x is not an integer value

Throws: MathError
Returns: value x

● random(top): Returns a uniformly distributed number in [value,top) (ie may equal value but
won't equal top).
Returns: Float

● round():
Returns: Float

● sqrt(): Square root
Throws: MathError if value<0
Returns: √value

● toBool(): Returns True if value is non zero, otherwise, False.
Returns: Bool

● toFloat():
Returns: self

● toInt(): Convert value to an integer.
Returns: Int

● toString(precision=6,format="g"): Convert value to a string and return it.
Precision is maximum number of digits after the decimal point.
Format is one of (you’ll recognize these from C’s printf):

● “f”: [-]mmm.ddd
● “eE”: [-]m.dddE±nn
● “gG”: Use “e” or “f” format depending on which “fits” best.

Examples:
● (1.23456789).toString() → 1.23457
● (1.23456789).toString(2,"f") → 1.23
● (1234567.89).toString(6,"e") → 1.234568e+006

Throws: ValueError
Returns: String

Degrees/Radians Methods
● toDeg(): Convert value (expressed in radians) to degrees.

Returns: value×180.0/ π

● toRad(): Convert value (expressed in degrees) to radians.
Returns: value×π/180.0

● toPolar(y): Convert rectangular coordinates (x,y) to polar coordinates (r,angleInRadians).
Value is x.

Returns: L(r,angle) == L(√value2+ y2 , tan−1 value
y

)

● toRectangular(angleInRadians): Convert polar coordinates (r,angle) to rectangular
coordinates. Value is r.
Returns: L(x,y) == L(value×cos (angle) , value×sin (angle))

 173

Objects

Trig Methods
● cos(): Cosine. Value is in radians.

Returns: cos(value)
● acos(): Arc cosine.

Returns: cos-1(value)
● sin(): Sine. Value is in radians.

Returns: sin(value)
● asin():

Returns: sin-1(value)
● tan(): Tangent. Value is in radians.

Returns: tan(value)
● atan(): Arc tangent.

Returns: tan-1(value)
● tan2(x): Calculate the principal value of the arc tangent of self/x, using the signs of the two

arguments to determine the quadrant of the result.
Returns: A value in [-π, π].

● sinh(): Hyperbolic sine.
Returns: sinh(value))

● cosh(): Hyperbolic cosine.
Returns: cosh(value)

● tanh(): Hyperbolic tangent.
Returns: tanh(value)

Other Methods
● exp(): ℮ⁿ, where n is value.

Returns: evalue

● log(): Natural logarithm of value (log base ℮) for value > 0.
Throws: MathError
Returns: log℮(value) aka ln(value)

● log10(): Log10(value) for value > 0.
Throws: MathError
Returns: log10(value)

● frexp(): C’s frexp.
Throws:
Returns: L(normalized fraction, power of 2)

● modf(fractionalPartAlwaysPositive=False): Split value into two parts: the part left of
decimal point (integer part) and the part to the right of the decimal (fractional part).
Examples:
(1.23).modf() → L(1,0.23)
(-1.23).modf() → L(-1,-0.23)
(-1.23).modf(True) → L(-1,0.23)
Returns: L(integer part, fractional part)

Properties
● e: ℮ ≈ 2.71828182845904523536

174 Float

Objects

● MIN:
● MAX:
● pi: π ≈ 3.141592653589793238462643383279502884197169399375
● sign: Returns -1, 0, or 1 if self is negative, zero or positive.

Returns: Int

Operators
For binary ops (eg +, <), the second operand is converted to a float (if it isn’t already one), the operation
is performed and a float result returned. Examples:
 1.5 + 2 → 3.5
 1.0 + 2.5 → 3.5
 1.5 + True → 2.5 because True.toFloat() → 1.0
 1.0 + Void → Error because Void won’t convert to a Float
 1.5 + "2.3" → 3.8

Operators
● eq (==): Returns False if the other operand isn't Int or Float. (x==y) is equivalent to

(x==y.toFloat()).
Result: Bool

● neq (!=): Returns (not (self==X))
Result: Bool

● lt (<): (x < y) returns (x<y.toFloat()). Y can be any object that has a toFloat method.
Result: Bool

● lte (<=):
Result: Bool

● gt (>):
Result: Bool

● gte (>=):
Result: Bool

● add (+): (x + y) returns (x+y.toFloat()). Y can be any object that has a toFloat method.
Result: Float

● sub (-):
Result: Float

● mul (*):
Result: Float

● div (/):
Throws: MathError on divide by zero
Result: Float

● mod (%): Modulo
Result: Float

● negate (unary -):
Result: Float(-value)

Discussion

 175

Objects

The built in random number generator has a uniform distribution86, to create a random number generator
with a normal (or Gaussian) distribution87:
 //normally distributed random w/mean & standard deviation
 // using the Box–Muller transform88

fcn mkRand(mean,sd){
 pi:=(0.0).pi;
 rz1:=fcn{1.0-(0.0).random(1)} // from [0,1) to (0,1]
 return('wrap(){((-2.0*rz1().log()).sqrt() *
 (2.0*pi*rz1()).cos()) *sd + mean })
}
var g=mkRand(1,0.5) creates a function that returns normally distributed numbers with a mean of 1
and standard deviation of ½. Eg g() → 0.636199. To test this:
 // create a list of 1000 Gaussian random numbers
 ns:=(0).pump(1000,List,g);
 mean:=(ns.sum(0.0)/1000); //-->1.00379

 // calc standard deviation of ns: //-->0.494844

(ns.reduce('wrap(p,n){p+(n-mean).pow(2)},0.0) /1000).sqrt()

86 http://en.wikipedia.org/wiki/Uniform_distribution_(discrete)
87 http://en.wikipedia.org/wiki/Normal_distribution
88 http://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform

176 Float

http://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Uniform_distribution_(discrete)

Objects

GarbageMan

Full name: [TheVault.]GarbageMan
Inherits from: Object

One threads garbage is another threads treasured memory
-- Programming proverb

Abstract
The GarbageMan controls garbage collection.

Methods
● collect(waitUntilCollected=True): Signals the garbage collector to start a collection cycle.

If one is currently running, that counts. If waitUntilCollected, collect doesn't return until the
current collection cycle has finished.
Returns: Void

● stats(collectThenPrint=True): Prints out some statistics about the objects the garbage
collector can see.
Returns: Void.

● WeakRef(object): Create a weak reference to object. Allows you to determine if object has
become garbage.
A WeakRef has these properties:

● isDead: True if object has been collected.
● ref: The object being watched. Void if object has been collected.

Returns: WeakRef or Void if object is not collectible (which Void isn't).

Discussion
Garbage collection is the process of reclaiming objects that are no longer in use. For example:
 x = "Hello" + " World";
 x = Void;
At this point, the string “Hello World” is no longer referenced by anyone, thus the memory it uses can be
reclaimed. Garbage collection “just happens”, it works in the background89 while your program runs,
reclaiming garbage. That said, collection is not a computationally cheap process and can exact a toll on
performance.

Weak References

From the Wikipedia:
A weak reference is a reference that does not protect the referenced object from collection by
a garbage collector; unlike a strong reference. An object referenced only by weak references
is considered unreachable (or weakly reachable) and so may be collected at any time.90

A strong reference can be created with Objects.Ref.
A weak reference will only create for references to objects that are, in fact, collectible. Some objects are
immortal and never die, so a weak reference would actually be a strong reference and is not allowed:

89 Literally, it is a thread.
90 http://en.wikipedia.org/wiki/Weak_ref

 177

http://en.wikipedia.org/wiki/Weak_ref
http://en.wikipedia.org/wiki/Weak_ref

Objects

 GarbageMan.WeakRef(True) → Void
 GarbageMan.WeakRef(Void) → Void
A weak reference can be useful for testing the garbage collector:
 var wr=GarbageMan.WeakRef(String("This is"," a test"))91

 wr.isDead → False
 do(5) {GarbageMan.collect()} // or just wait a while
 wr.isDead → True

91 A string, eg s:="test string", may not be collectible if it is embedded in function code. Strings created at run time
are collectible (which isn't the case with String("test string")).

178 GarbageMan

Objects

Import

Full name: [TheVault.]Import
Inherits from: Class

Abstract
Import a Class or library from the Vault or file system. The file is compiled if need be.

Functions
● import(rootClassName, addToVault=False, ignoreVault=False,

runConstructor=True): Look around for a class or library and load it.
RunConstructor can also be a list of parameters to pass to the constructor (which are flattened
when the constructor is called). This is for scripts.
Throws: LoaderError, ImportError (a child of LoadError), others
Returns: Class or Native

● lib(libraryName, addToVault=False): Look around for alibrary and load it.
This is for when you want to only load a library, for example when foo.zkl and foo.dll co-exist;
Import.lib("foo") will not find foo.zkl.
A front end to System.loadLibary.
Throws: LoaderError, ImportError (a child of LoadError), others
Returns: Class

● init(rootClassName, addToVault=False, ignoreVault=False, runConstructor=True):
This just calls import, ie Import("foo") calls Import.import("foo").
Returns: Import.import(rootClassName, addToVault, ignoreVault,

 runConstructor)

Discussion
Import loads a Class or Library from the Vault or file system. It will compile source code if it can't find a
compiled version. If the class will be useful to other programs, it can be added to the Vault (the system
start up code does this so things like the compiler are readily available). If you wish to bypass the Vault,
you can (you might be developing a new version of a core class). Normally, it is always a good idea to
run the constructor (it initializes the class) but, in some cases, this may not be the desired behavior.

Source code is searched for along System.classPath.
Libraries are searched for along System.libPath.

Examples:
 Date=Import("Time.Date"); // from the Vault
 Date=Import("Time/date.zsc"); // Read compiled file
 Date=Import("Time/date.zkl"); // Compile source code
 Date=Import("Src/Time/date"); // Compile source
 println(Date.ctime());

 ZLib=Import("zeelib"); // Import library

 179

Objects

Search Order
1. If searching the Vault: The Vault is searched for the RootClassName, and if found, it is returned.

The constructor is not run, it is assumed that, if it is has been loaded into the Vault, it has been
constructed. This is not true in the case of scripts so, if it can be determined that the class is a
script, the constructor is run (if runConstructor is True or a List).

2. A file name (the name ends with “.zkl”, “.zsc” or “.”). The file system is searched for the file.
System.classPath is used in the search. A ZSC file is just loaded (using System.loadFile2), a
“.zkl” file is compiled and if the extension is a dot, first a “RootClassName.zsc” file is looked
for, then “RootClassName.zkl”.

3. Now, heuristics are applied. RootClassName is mangled into a “.zsc” file name and searched for
in the file system. If that fails, it is mangled into a “.zkl” file name and searched for (if found, the
file is compiled).

4. Finally, an attempt is made to load the file as a library.

File System to Vault Mapping
The Vault is laid out like a file system. The idea to make it easy to look at a Class full name and know
where it is in the file system, just by replacing dots with slashes. For example, take
“TheVault.Compiler.Compiler”. Replace the dots to get “TheVault/Compiler/Compiler”, then replace
“TheVault” with the entries in System.classPath or libPath and you should be able to find the
corresponding file. In this example, classPath is L("C:/ZKL","C:/ZKL/Src","C:/ZKL/Built") and indeed,

C:\ZKL>ls -l C:/ZKL/Src/Compiler/compiler.*
---a--- 65054 18:24:06 05/21/2007 C:/ZKL/Src/Compiler/compiler.zkl
C:\ZKL>ls -l C:/ZKL/Built/Compiler/compiler.*
---a--- 25072 18:43:40 05/21/2007 C:/ZKL/Built/Compiler/compiler.zsc

You might have noticed a small problem on Unix systems: a case mismatch. A common zkl convention
is to capitalize class names. This conflicts with another common convention, that of capitalized directory
names and lower case file names. So, the compromise (on Unix, Windows doesn't care), is to force paths
(file and vault) to match case and to ignore case for class and file names.

Importing a Library
Libraries are treated like classes or files, only less so. This means that if a class has the same name as a
library, the class will be loaded instead of the library. This is unfortunate but works that way so that the
programmer doesn't need to know they are different. You can included the extension in the file name (for
example Import("zeelib.dll")) but that doesn't work so well if you want your code to work across
platforms (the library is named “zeelib.so” on Unix).
To avoid worrying about this possibility, use Import.lib("zeelib").

Scripts
The constructor of a script is the script, which is functionally different from Class constructors. If a
script is in the Vault (as is Test.testThemAll) and you import it, you usually want to run it; this is the
case when you invoke a script from the command line; you want the script to run the same no matter
where it is found – in the Vault or file system. But this is a problem for import because it doesn't know a
script from Class (basically because there isn't a difference). So, to help import out, if the RootClass has
the isScript flag set, the constructor will be run if the script is in the Vault and runConstructor is
True/List. For example:
 AKA(Test.testThemAll);
 Attributes(script); // flag for Import

180 Import

Objects

Int

Inherits from: Object

Abstract
Sixty four bit integers. Integers are immutable, that is, they don’t change. You “change” them by
creating new ones (usually indirectly).

The compiler recognizes the following as integer constants:
● [-][0-9]+ : A decimal integer. Eg 123, -123, 0123
● [-]0x[0-9a-fA-F]+ : A hexadecimal integer. Eg 0xab, 0xAB, -0x12.

0X12 isn't a hex constant.
● 0b is binary and 0d is decimal.
● “_” can be used as a separator: 1_234 == 1234
● When using 0b, 0d or 0x “|” characters are allowed and ignored. For example, 0b1100|0000 is

0xc0 and 0d1_000 is 1,000.

Terms
● Value refers to the numeric value of self.

Methods
● abs([n]): Returns the absolute value of value. If n, returns the absolute value of n.

Returns: Int(abs(value)) or Int(abs(n))
● bitAnd(mask,[mask ...]): Bitwise AND value with mask(s).

Returns: Int(value & mask [& mask ...]) in C speak
● bitNot(): Bitwise NOT value. Also known as one's complement.

Returns: Int(~value) in C speak
● bitOr(mask,[mask ...]): Bitwise OR value with mask(s).

Returns: Int(value | mask [| mask ...]) in C speak
● bitXor(mask,[mask ...]): Bitwise XOR value with mask(s).

Returns: Int(value ^ mask [^ mask ...]) in C speak
● clamp(min,max): Returns the closest value in the range [min,max].

Returns: Int
● copy(): Returns self. Since Ints are immutable, self is equivalent to a copy.

Returns: self
● create(n=self): Create an Int with value set to n.

Throws: OutOfMemory
Returns: Int

● div2(n): Divides value by n retuning (value/n , value%n)⌊ ⌋ 92. Signed parameters may suprise
you.
Eg (3).divr(5) → T(0,3)==3/5. (13).divr(5) → L(2,3)==23 /5.

Returns: T(self/n,remainder)
● filter(count,[f [,static parameters]]):

Another way of writing [value,value+count-1].filter(…).

92 n is n.toInt()⌊ ⌋

 181

Objects

To skip multiples of three:
 (10).filter(10,'%(3)) → L(10,11,13,14,16,17,19)
Note that there are only 7 results, not 10.

● filter(count,T(f, T(f2,static parameters), f3 …):
This is useful when you have multiple filters, they act like a big “and” statement.
For example, to strip out 13,15 and 19 from a list of numbers:
 (10).filter(10,T('!=(13),'!=(15),'!=(19))) → L(10,11,12,14,16,17,18)
Returns: ROList

● filter1(count|* [,f [,static parameters]]): Same as filter but stops at first True result.
Returns: Int|Void

● len(): Returns the number of bytes in value. (0xffff).len() → 2
● len(base): If base is specified, returns the number digits in valuebase. Base can be 2, 10 or 16.

The absolute value of value is used.
(0xffff).len(2) → 16, (0xffff).len(16) → 4, (-123).len() → 3
Returns: Int

● log2([n]): Returns log2(value). Value is treated as unsigned and log2(0) is 0. If n, use that
instead of value.
(0xffff).log2() → 15
Log2 is also the position of the MSB93 (most significant bit).
Returns: Int

● max(ints or floats): Returns the maximum of self and the parameters.
To find the max in a list of numbers, use list.reduce(list[0].max)
Returns: Int

● max(list): Returns the maximum of the contents (as ints) of the list.
Returns: Int

● min(ints or floats): Returns the minimum of self and the parameters.
Returns: Int

● min(list): Returns the minimum of the contents (as ints) of the list.
Returns: Int

● minMax(ints|floats|List): As in min or max but returns both.
For example: (13).minMax(5) →L(5,13) (ie a two element sort).
Returns: L(min,max)

● minMaxNs(List): Returns the index of the min and max elements.
For example: (0).minMaxNs(L(4,5,1,2,3)) →L(2,1).
Returns: L(index of min,index of max)

● Property(name): Same as Object.Property except the instance is an undefined Int. For example:
x:=123; x.Property("name").instance → 0
See: Objects.Object.Property
Returns: Property

● pump(sink[,action …]): The same as (0).pump(self,...)
● pump(*,sink[,action …]): The same as (0).pump(*,…), ie infinite.
● pump(count,sink[,action …]): Starting at self, run actions count times, optionally

aggregating the results into a list. The result of (3).pump(2,List,a1,a2) is
L(a2(a1(3)),a2(a1(4)).
If aggregate is False, the last calculated value is the result.

93 http://en.wikipedia.org/wiki/Most_significant_bit

182 Int

http://en.wikipedia.org/wiki/Most_significant_bit

Objects

Some examples:
● To print a boolean math table:

println("x y and or");
(0).pump(2,Void,fcn(a){(0).pump(2,Void,'wrap(b){
 println("%d %d %d %d"
 .fmt(a,b,a and b, a or b))
 })
});
→ x y and or
 0 0 0 0
 0 1 0 1
 1 0 0 1
 1 1 1 1

● Five rolls of a die:
fcn die{ (0).random(1,7) }
(0).pump(5,List,die) → T(3,6,3,1,5)

● Four rolls of the dice:
(0).pump(4,List,fcn{return(die(),die())})
 → L(L(6,5), L(5,2), L(1,4), L(5,6))

● 0 + 1 + 2 + 3 + 4 … :
(0).pump(10,List,fcn(n,p){p[0]=p[0]+n}.fp1(L(0)))94

→ L(0,1,3,6,10,15,21,28,36,45)
This works by using a list to hold the previous value, thus maintaining state.

See also: reduce, “notes on the pump method” at the start of this chapter.
Returns: last result | List

● random: A xor shift random number generator95 with a period of 2128 – 1. Its properties have not
been verified, don't trust it if it matters.

● random(): Returns a non-negative random integer.
● random(stop): Returns random(self,stop).
● random(start,stop): Return a number in the range [start,stop) (ie it might equal start but it

won't equal stop). If start is an integer, the result is integer, otherwise, the result is a floating
point number.
Examples:

● (0).random() → 2500
● (0).random(10) → 5 (an integer between zero and nine)
● (0).random(0.0,10) → 1.54759 (a floating point number between zero and nine, can include zero).
● (0).random(0.0,1) → 0.249947 (a float between zero and one)
● (0).random(-10,0) → -6
● Let's say you need an enumerated list of coin tosses:

var coin=[1..].zip((0).random.fp(2));
coin.walk(3) ; // → L(L(1,0),L(2,1),L(3,0))
coin.walk(2) ; // → L(L(4,0),L(5,0)) , one head in 5 tosses

All threads share this data, which may skew the “random-ness” for each thread.
A test of the distribution of 0-9 over 10 million trials:

94 If you were to rewrite this as f:=fcn(n,p){ p[0]=p[0]+n }.fp1(L(0)), then every time you
(0).pump(10,List,f), you would get a continuation of the series.

95 Currently and subject to change without notice.

 183

Objects

 dist:=L(0,0,0,0,0,0,0,0,0,0);
 do(0d10_000_000){n:=(0).random(10); dist[n]=dist[n]+1}
 N:=dist.sum();
 dist.apply('wrap(n){"%.2f%%".fmt(n.toFloat()/N*100)});
 → 10.02%, 10.00%, 10.00%, 9.99%, 10.00%, 10.00%, 10.00%, 10.01%, 9.99%, 10.00%
Returns: Int or Float

● reduce(count|*,f,initialValue=value [,parameters]): A feedback loop which runs fcn
count times. The calls are:
 p:=initialValue;
 p=fcn(p,value, parameters);
 p=fcn(p,value+1,parameters);
 … count times
To stop the loop, return(Void.Stop) or return(Void.Stop,result).
An example:

● The geometric series: 1 + ½ + ¼ + … (20 + 2-1 + 2-2 + 2-3 + …)96:
(0).reduce(19,
 fcn(p,n){(p+=(2.0).pow(-n)).println(); p},0.0)
→ 1, 1.5, 1.75, 1.875, 1.9375, 1.96875, 1.98438, 1.99219, 1.99609, 1.99805, 1.99902, 1.99951, 1.99976,
1.99988, 1.99994, 1.99997, 1.99998, 1.99999, 2
and returns 2 (rounded, 1.999996185302734375 actual)

Returns: p
● shiftLeft(n): Shift value left n bits.

Returns: Int(value << n) in C speak
● shiftRight(n): Shift value right n bits

Returns: Int(value >> n) in C speak
● split(base=10): Return a list of digits, base is between 2 and 36.

(12).split() → L(1,2), (0xABC).split(16) → L(10,11,12), (0).split() → L()
See also: toLittleEndian, toBigEndian, toString
Returns: List

● toBigEndian(numBytes): Convert value to numBytes of big endian goodness.
For example:
 (0x1234567890).toBigEndian(5) → L(0x12,0x34,0x56,0x78,0x90)97

If numBytes is greater than the number of bytes in value, the result is padded with zeros:
(0x12).toBigEndian(2) → L(0,0x12)
See also: split, toString, toLittleEndian
Returns: List of numBytes Ints.

● toBool(): Returns True if value is non zero, otherwise, False.
Returns: Bool

● toChar(): Converts value to a character. If value is not in the range [0,255], ValueError is
thrown. No character set is assumed, a one character string is created with that character being
value.
For example: (0x31).toChar() → “1”
See Also: To convert to UTF-8, use toString(-8).
Throws: ValueError
Returns: String

96 http://en.wikipedia.org/wiki/Geometric_progression
97 To convert a list of Ints to another radix, use apply: (0x1234).toBigEndian(2).apply("toString",16) →

L("12","34")

184 Int

http://en.wikipedia.org/wiki/Geometric_progression

Objects

● toFloat(): Convert value to a floating point value and returns it.
Returns: Float

● toInt(): Returns self.
Returns: Int

● toList(): Same as value.walker().walk() and value.pump(List).
Returns: List(0,1,2,..value)

● toList(stop): Same as self.walker(stop-value).walk().
Returns: List(value,value+1,...stop-1)

● toLittleEndian(numBytes): Convert value to numBytes of little endians.
For example: (0x1234567890).toLittleEndian(3) → L(0x90,0x78,0x56)
See also: split, toBigEndian, toString
Returns: List of numBytes Ints.

● toString(): Convert value to a decimal (base 10) string and return it.
● toString(B): Convert value to a base B, where is B is from 2 to 36.
● toString(-8): Convert value to UTF-8 where self is the digits of the encoded UTF-8

character: "\u20ac" == "€" == (0x20ac).toString(-8).
To convert from a UTF-8 character to Int:
 utf_int:=utf.reduce(fcn(s,c){ 0x100*s + c.toAsc() },0)
Examples:
 (5).toString(2) → “101”
 (15).toString(16) → “f”
 (12).toString() → “12”
 (0xC9).toString(-8) → “É”
Throws: ValueError
See also: split, toBigEndian, toLittle
Returns: String

● walker(): Creates a walker from 0 to value – 1, ie (0).walker(value).
● walker(count): Creates [value..value+count–1].
● walker(*): Creates a walker from value to infinity (and beyond).

(0).walker(*) makes a good “base” walker which you can tweak to walk the walk (see
Objects.Walker).
Returns: Walker

Properties
● isEven: Returns True if value is even.
● isOdd: Returns True if value is odd.
● MAX: The biggest positive integer.
● MIN: The negative integer furthest from zero.
● nextPowerOf2: The next power of 2 that is greater or equal to self.

(200).nextPowerOf2 → 256, (256).nextPowerOf2 → 256
● num1s: Returns the number of 1 bits in self (treated as unsigned).

Returns: Int
● numDigits: Returns the number of digits in self (treated as signed). Zero has no digits, -1 has 1

digit.
Returns: Int

● sign: Returns -1, 0, or 1 if value is negative, zero or positive.
● text: The same as self.toChar().

 185

Objects

Operators
For binary ops (eg +, <), the second operand is converted to an integer (if it isn’t already one), the
operation is performed and the result returned. Examples:
 1 + 2 → 3
 1 + 2.5 → 3
 1 + True → 2 because True.toInt() → 1
 1 + Void → Error because Void won’t convert to an Int
 1 + "2" → 3
The OPs

● eq (==): Returns False if the other operand isn't Int or Float. (x==y) is equivalent to
(x==y.toInt()) if y is a Float.
Result: Bool

● neq (!=): Returns (not (value==X))
Result: Bool

● lt (<): (x<y) returns (x<y.toInt()). Y can be any object that has a toInt method.
Result: Bool

● lte (<=):
Result: Bool

● gt (>):
Result: Bool

● gte (>=):
Result: Bool

● add (+): (x+y) returns (x+y.toInt()). Y can be any object that has a toInt method.
Result: Int

● sub (-):
Result: Int

● mul (*):
Result: Int

● div (/):
Throws: MathError if divide by zero.
Result: Int

● mod (%): Modulo
Result: Int

● negate (unary -):
Result: Int(-value)

186 Int

Objects

Language

Full name: [TheVault.]Language
Inherits from: Object

Abstract
This object contains information about the zkl Programming Language.

Methods: None

Properties
● authors: Returns a list of the people who created and wrote zkl.

Returns: List of Strings
● email: Where to send email about zkl.

Returns: String
● license: The license that governs the zkl executable. As of this writing:

The license for the zkl Programming Language executable.

This is basically the zlib license and covers only this program.
Not covered:
 - Source code.
 - Programs produced by this program (they are yours).
 - [Shared] libraries (such as extensions) used by this program.

Copyright (c) 2007,2008,2009,2010,2011 Craig Durland

This program is provided 'as-is', without any express or implied
warranty. In no event will the author(s) be held liable for any damages
arising from the use of this program.

Permission is granted to anyone to use this program for any purpose,
including commercial applications and redistribute it freely, subject to
the following restrictions:

1) The origin of this program must not be misrepresented; you must not
 claim that you wrote the original program. If you use this program
 in a product, an acknowledgment in the product documentation would be
 appreciated but is not required.
2) You may not distribute an altered version of this program. You may,
 however, build a new program from the source code and distribute
 that, subject to the source code license(s).
3) This notice may not be removed or altered.

Please send me bug reports, fixes and enhancements so I can continue to
improve zkl.
Thank you.

 187

Objects

Craig Durland craigd@zenkinetic.com
Returns: String

● name:
Returns: “zkl”

● version: A list of the major and minor version numbers, a mystery number, and the release date.
Returns: List

● versionString: A text version of the version.
Returns: String

● webSite: The url of the zkl website: http://zenkinetic.com/
Returns: String

Operators: None

Discussion

188 Language

Objects

List

Full name: [TheVault.]List
Inherits from: Object
See Also: Objects.ROList, Objects.Thread.List

Abstract
A list is a mutable linear collection of heterogeneous objects. In other words, a list can contain objects of
different types (for example, a list might contain both strings and numbers).

“L” is short hand for “List”.
To create a list containing two numbers and one string: List(1,2,"three") or L(1,2,"three").

The first item in a list is at offset zero.

A List might be thread safe or it might not be. If you need a guaranteed thread safe List, use Thread.List
or Thread.Pipe. If you want a read only list, use ROList (you can convert any list to read only with the
makeReadOnly method).

Terms
● “items” refers to the contents of the List
● “offset”: See Rules for Offset (below)
● “length”: See Rules for Length (below)
● “thread-safe”: A method or property is marked thread safe if multiple threads can perform that

operation (or any other that is also thread safe) at the same time without clobbering each other.
This is ONLY true if the list is a thread safe list.

Methods (if marked thread-safe, that is only true if self is thread-safe)
● append(objects): thread-safe

Append each of the objects to the end of items.
Returns: self

● clear(): thread-safe Removes all items from self.
Returns: self

● clear(objects): The same as clear().append(objects).
Returns: self

● concat(seperator="",prefix="",suffix=""): Not thread-safe
Concatenate items into a string.
Example: L(1,"two",3.4).concat(",") → “1,two,3.4”
 L(1,"two",3).concat(",", "(", ")") → “(1,two,3)”
Returns: String

● copy(): thread-safe Creates a new instance and copies items to the new list.
Throws:
Returns: List

● create([objects]): Create a new List instance and optionally append objects to it. The new
list is the same type as self (ie thread safe lists create thread safe lists, unsafe lists create unsafe
lists).

 189

Objects

Throws:
Returns: List

● createLong(size [,fill,runFill=False]): Create a new List and preallocate space for size
items. The items don't exist, this method just reduces the amount of memory allocation that has
to be done if you know the size of the list. This is a regular list in all respects. The new list has
the same thread safety as self.
If fill, all element are set to fill. If runFill, each element is set to fill().
For example, List.createLong(5,Node,True) is the same as
 (5).pump(List(),fcn{ Node() }).
Throws:
Returns: List

● del(offset [,length]): thread-safe
Remove items from self. del(-1) deletes the last item, del(0,*) clears the list (see clear).
Throws: IndexError
Returns: self

● extend(objects): thread-safe
Similar to append, but if one of the objects is a list, that list is “flattened” and its contents are
appended. Empty lists are ignored.
Lists are not recursively flattened.
This actually works with circular lists.
Examples:
 L(1,2).extend(3) → L(1,2,3)
 L(1,2).extend(L(3,4)) → L(1,2,3,4)
 x=L(1,2); x.extend(x) → L(1,2,1,2)
 L(1,2).extend(L(3,L(4))) → L(1,2,3,L(4))
See also: flatten
Throws:
Returns: self or a new ROList if self is a ROList

● find(x,offset=0,length=*) thread-safe
Searches items for x and returns the offset where it is found or Void if not found.
Offset and length can be used to restrict the breadth of the search.
X’s eq operator method is used for comparison (as in holds).
Returns: Int or Void

● flatten(): thread-safe A convenience method that “flattens” self by removing empty lists and
replacing lists with their contents (one level only).
 L(L(),1,T(2),L(T(3))).flatten() → L(1,2,L(3))
Returns: ROList.extend(self.xplode()) (an ROList)

● get(offset [,length]): thread-safe The same thing as __sGet.
Throws: IndexError
Returns: Object, List or ROList

● holds(x,offset=0,length=*): thread-safe
Returns True if x is in items.
X’s eq operator method is used for comparison:
 (x==items[n] and items[n].isType(x))
Examples:
L("one","two",3).holds(3) → True
 L(1,2,3).holds("3") → False

190 List

Objects

 L(1).holds(1.0) → False
Throws:
Returns: Bool

● index(x,offset=0,length=*): thread-safe
Same as find but throws IndexError if not found.
Throws: IndexError
Returns: Int

● insert(offset,object(s)): thread-safe
Insert objects before the item at offset. If offset is equal to length (or *), objects are appended.
 L(1).insert(0,2) → L(2,1)
 L(1).insert(-1,2) → L(2,1), -1 is the last item
 L(1,2).insert(-1,3) → L(1,3,2)
 L(1).insert(*,2) → L(1,2)
Throws: IndexError
Returns: self

● len(): thread-safe Returns the number of items.
Returns: Int

● makeReadOnly(): thread-safe Convert self to a Read Only List. The list can not be converted
back.
Returns: ROList

● pad(n,obj): Append obj to self n times.
Returns: self

● pop(): Remove the last item.
● pop(offset): Remove an item and return it.
● pop(offset,length): Remove items and return them.

Thread-safe
This method behaves the same as:
 result=items[offset,length]; items.del(offset,length);
If length is used, a list of items is returned; otherwise, a singleton is returned. For example:
 L(1,2,3).pop(0) → 1 & the list is L(2,3)
 L(1,2,3).pop(0,1) → L(1)
Throws: IndexError
Returns: Object or ROList

● push: A synonym for append.
● remove(object(s)): thread-safe

Search items for objects and, if found, remove all of them. Found is defined as
(items[n].isType(object) and object==items[n]).
Examples:
 L(1,2).remove(1) → L(2)
 L(1,2).remove(1,2) → L()
 L(1,1).remove(1) → L()
 L(1,2,4).remove(1,2,3) → L(4)
 L(L(1,2),"three") – L(1,2) → L(”three”)
 L("3").remove(3) → L(“3”)
To remove a string from a list of strings while ignoring case:
 list.filter(fcn(s1,s2){(not s1.matches(s2))} ,s2)
Throws: whatever == throws
Returns: self

 191

Objects

● removeEach(object(s)): thread-safe
The same as remove except, if object is a List, the contents of the list are removed.
L(1,2,3).removeEach(L(1),2) is the same as L(1,2,3).remove(L(1).xplode(),2). Both
return L(3).
Throws: whatever == throws
Returns: self

● reverse(): Reverses items, in place. thread-safe
L(1,2,3).reverse() → L(3,2,1)
L(4,23,6,1).sort().reverse() → L(23,6,4,1)
Returns: self

● set(offset,newValue): thread-safe
Set the item at offset to newValue. This is the same as items[offset]=newValue.
If self is read only, a new read only list is returned.
Throws: IndexError
Returns: self or new read only list

● __sGet(offset [,length]): thread-safe
Implements list[offset [,length]].
list[offset] returns the item at offset.
list[offset,*] returns a list of the items after, and including, the one at offset.
list[offset,length] returns a list of length items (or shorter).
Throws: IndexError
Returns: Object, List or ROList

● __sSet(x,offset[,length]): thread-safe
Implements list[offset [,length]]=x
list[offset]=x replaces the item at offset with x.
list[offset,2]=x replaces the two items at (offset, offset+1) with x.
Throws: IndexError
Returns: x

● swap(offset,offset): thread-safe
Swap two items. swap(0,-1) swaps the first and last items.
Throws: IndexError
Returns: self

● tail(n): not thread-safe
Returns a list of the last n items of self. If n is larger than length, n is set to length.
Returns: read only list

● toBool(): thread-safe Returns True if there are any items in self.
Returns: Bool

● toData([mode=Int|String]): thread-safe Each item in self is added to a Data. If an item is
also a list, its contents are added.
If items are circular or recursive, this method will dead lock or break.
Throws:
Returns: Data

● toDictionary(): thread-safe Converts a list of key,value pairs into a Dictionary.
Items are either a list of key/value pairs or a list of lists, where each item is a list of key/value
pairs.
Examples:
 L("key","value",1,2).toDictionary() → D(key:value, 1:2)

192 List

Objects

 L(L("key","value"),L(1,2)).toDictionary()
 → D(key:value, 1:2)
Throws: TypeError, ValueError
Returns: Dictionary

● toList(): thread-safe
Returns: self

● toString(numItems=N,depth=2): Not entirely thread safe
Returns “L(…)”, where “...” is usually replaced by the contents of the list. The number of items
printed is controlled by numItems; if it is zero, the result is “L()” or “L(...)”. If it is *, the entire
contents are printed. The default value is implementation defined. Depth (which can be *)
controls how deep objects are traversed. For example, a recursive list:
 r:=L(1); r.append(r,3); r.toString() → L(1,L(1,L(...),3),3)
 r.toString(*,0) → L(1,L(...),3)
Throws:
Returns: String

● xplode(offset=0,length=*): thread-safe98

Replaces self in the parameter list with items. This almost the same as pushing
list[offset,length] into the parameters, the difference being xplode(offset) pushes the
rest of the list (list[offset] returns one item).
Examples:
 f("a",L(1,2,3).xplode(),"b") → f("a",1,2,3,"b")
 f(L(1,2,3).xplode(1,1)) → f(2)
 f(L(1,2,3).xplode(3)) → IndexError
 f(L(1,2,3).xplode(3,1)) → f()
Note that this is ONLY useful in a parameter list. In all other cases, xplode just returns Void.
Some deviate examples:

● println("a",L(1,2).xplode().len(),"b") → “a0b”. This happens because
L(1,2).xplode().len() turns into (x.xplode()).len() → (Void).len(1,2) →
0. One might think it should have been: (1,2).len() → mystery result but that's not the
way it works.

● L(1).xplode().append("hoho") → NotFoundError: Void doesn't have append.
See Also: Objects.VM.pasteArgs
Throws: IndexError
Returns: Void

● walker(): Returns a iterator for walking the list.
Example:
 foreach x in (L(1,2,3)){…} // indirectly creates a Walker
Thread safety: While the creatation and operation of the walker is thread safe, if items are
changed by another thread while walking, what gets walked is open to question. However, it
won't break.
Throws:
Returns: Walker

98 The issue of thread safety is not as silly as it first appears. If there is a global shared resource (for example a dictionary of
lists) and multiple threads read and xplode from that resource (at the same time of course), it would not be funny at all if
yet another thread was changing the contents of those lists. I'll spare you the details of how painful that was to figure out
but it was a vocabulary expanding experience.

 193

Objects

Stream methods

● lose(): thread-safe Does nothing.
Returns: self

● flush(): thread-safe Does nothing.
Returns: self

● write(objects): thread-safe A synonym for append.
Returns: self

● writeln(objects): thread-safe A synonym for append.
Returns: self

Utility Methods

These are not thread safe.
● apply(Fcn | Method | Op | Class | String | List [,static parameters]):

L(1,2).apply(f) → L(f(1),f(2))
Apply a transformation to each item of the list and return a list of the results. The original list
isn’t modified.
Apply can be used to multiply two vectors:
 fcn vecmul(v1,v2,f)
 { v1.apply('wrap(v){ v2.apply(f.fp(v)) }) }
 vecmul(T("a","b","c"), T(1,2), '+)
 → L(L("a1"), L("a2"),
 L("b1"), L("b2"),
 L("c1"), L("c2"))

● apply(Fcn [,static parameters]): Fcn is a function that takes one or more parameters, the
first of which is an item from the list and the rest are the static parameters, which don't change.
Examples:
 L(1,2).apply(fcn(x){ x + 10 }) → L(11,12)
 fcn f(x,y){ y*(x + 10) }
 L(1,2).apply(f,10) → L(110,120)

● apply(Method [,static parmaters]): This doesn’t seem very useful but here is a way to
convert each item to a string:
 L(1,3.4,self).apply("%s".fmt) → L("1","3.4","Class(RootClass#)")

● apply(Class [,static parmeters]): This also seems to be of dubious value, unless you want
to create a bunch of classes:
 class C{ var n; fcn init(n){ self.n=n; } }
 x:=L(1,2).apply(C) → L(Class(C),Class(C))
 x[0].n==1 and x[1].n==2

● apply(methodName [,static parmaters]): For each item, call the named method with
optional parameters.
Convert a list of integers to hex strings:
 L(15,16).apply("toString",16) → L("f","10")

● apply(propertyName): Retrieve the named property for each item.
 L("one",2,3.4,L(5)).apply("type") → L("String","Int","Float","List")

● apply(varName): If the list contains Classes (for example, if it is the one we created in the
“Class” example above), we can query a class variable.
 class C{ var n; fcn init(n){ self.n=n; } }
 L(1,2).apply(C).apply("n") → L(1,2)

194 List

Objects

Note that the three String apply methods (methodName, propertyName and varName) are
somewhat dicey; what actually happens is that item.resolve(name) is called for each item
and, depending on what the result is, the following is appended:

● Method, Property or function: The method, property or function is called with the static
parameters.

● Otherwise, the result is appended.
So, unless you know the contents of the list, this could be a bit of a crap shoot.
See Also: callMethod, callProperty, apply2, filter, reduce, Utils.Helpers.listZipWith.
Throws: Many
Returns: ROList

● apply2(Fcn | Method | Op | Class | String | List [,static parmaters]):
L(1,2).apply2(f) → f(1); f(2) → Void
A side effects only version of apply, the results are not saved or returned. Another form of a loop
or for the pedantic who want to avoid the overhead of creating a list.
See also: reduce
Returns: Void

● calcChunk(i,max,flags=0): This method calculates offset and length for a vector containing
max items. Items contains the indexing parameters. i is the index of the offset parameter in items
(usually 0 or 1).
For example, if you are managing array A, containing N items, the validity of A[1] can be
calculated with L(1).calcChunk(0,N) → L(1,1) (one item at offset one, the first parameter (the
zero in the calcChunk call) is where to find the offset into A). For A[1,2], use
L(1,2).calcChunk(0,N) → L(1,2) (two items, starting at offset one).
L(1,200).calcChunk(0,5) & L(1,*).calcChunk(0,5) → L(1,4).

Useful when implementing __sGet and __sSet for your class; you can call calcChunk on
vm.arglist. If C is a class, then C[3]=4 results in C.__sSet(4,3). You can use
vm.arglist.calcChunk(1,max) to verify 3 as the offset.

This method throws on errors. For example, L(1).calcChunk(0,0) throws an IndexError as 1 is
out of bounds for an empty array. Which can be confusing as L().calcChunk(1,max) will also
generate an IndexError.

See Rules for Offset and Length (below).
Only one dimensional arrays are supported.
Flags control the behavior in boundary cases.
Throws: IndexError, conversion errors.
Returns: L(offset,length)

● callMethod(methodName): Call a method on each item and return a list of the results. Items are
not modified.
Examples:
 L("1","22","333").callMethod("len") → L(1,2,3)
 L("1","22","333").callMethod("toInt") → L(1,22,333)
 L(1,22,333).callMethod("toString",16) → L("1","16","14d")
See also: apply
Throws:
Returns: List

 195

Objects

● callProperty(propertyName): Get a property for each item of a list and return the results.
Items are not modified.
Example:
 L("one",2,3.4,L(5)).callProperty("type")
 → L("String","Int","Float","List")
See also: apply
Throws:
Returns: List

● filter(f [,static parameters]): Calls f for each item of the list, converts the result to Bool
and, if True, appends it to the result list.
Examples:

● L(0,1,"2").filter() → L(1,“2”)
● Find all strings in a list:

L(1,"two",3.4).filter(fcn(x){ x.isType("") }) → L(“two”)
● Static parameters are passed unchanged to the function. One use might be to find all

strings that match a pattern:
x:=names.filter(
 fcn(nameFromList,pattern)
 { nameFromList.matches(pattern) },

 pattern);

Then, if pattern = “*oo*” and names = L(“foo”,“oo”,“bar”,“kangaroo”)
x → L(“foo”,“oo”,“kangaroo”)

See also: a“notes on the filter method” at the start of this chapter.
Returns: List

● filter1(f [,static parameters]):
The same as filter but returns False (nothing passed) or .filter(...)[0]. Traversal stops when
an item “passes”.
For example, a stack trace shows Helpers.__fcn#15_403 and you would like to examine that
function. Since you can't directly access it (due to the “#” in the name), you need a sneak attack:
 Utils.Helpers.fcns.filter1(fcn(f){f.name.matches("*#15*")})
 → Fcn(__fcn#15_403)
This filter takes each Fcn in Helpers, extracts the name and string matches against the name.
See also: a“notes on the filter method” at the start of this chapter.
Returns: Object or False

● filter1n(f [,static parameters]):
The same as filter1 but returns an index instead of an item. Note the that the index can be zero so
use this test:
 if (False!=list.filter1n(…)) …
See also: a“notes on the filter method” at the start of this chapter.
Returns: Int or False

● filter22(f [,static parameters]): Another version of filter, this splits items into two lists,
one that passed the filter and one that didn't.
For example, in left,right=rest.filter22('<,pivot);, left is a list of the items that are less
than pivot and right is the ones that aren't.
 L(1,2,3,4).filter22('<,3) → L(L(1,2),L(3,4)).
Throws: yes
See also: a“notes on the filter method” at the start of this chapter.
Returns: ROList(ROList(items that pass),ROList(the other items))

196 List

Objects

● filterNs(f [,static parameters]):
The same as filter1n but returns indexes all items that pass.
Returns: List

● merge(sorted list|<sorted objects>): Merge list with self using the < operator. It is
assumed that both lists are sorted. Assumes both self and list are sorted in increasing order.
If < throws, self is in an unknown state.
Throws: Whatever self[n]<list[m] throws.
Returns: self

● pump(sink[,action ...]): Another type of loop, similar to apply but with multiple actions.
pump(List,x,y,z) returns the same result as apply(x).apply(y).apply(z) or
apply(T(x,y,z)).
pump(Void,x,y,z) is equivalent to apply(T(x,y,z))[-1,1].
See also: apply, reduce, “notes on the pump method” at the start of this chapter.
Returns: The last calculated value or a list of those values.

● reduce(f, initialValue=items[0] [,static parameters]):
Reduce the list to a single value or calculate a value from the contents of a list. Another form of a
feedback loop.
F is a callable that takes two (or more) parameters, the first parameter is the previous value of
f(p,i) (or initialValue) and the second is an item, followed by, if any, the static parameters (which
won't change).
Reduce returns the previous value.
To stop the loop, return(Void.Stop) or return(Void.Stop,result).
The starting value is item[0] or initialValue.
 L().reduce(f) → Void
 L().reduce(f,i) → i
 L(x).reduce(f) → x
 L(x).reduce(f,i) → f(i,x)
 L(x,y).reduce(f) → f(x,y)
 L(x,y,z).reduce(f) → p=f(x,y); p=f(p,z)
 L(x,y).reduce(f,i) → p=f(i,x); p=f(p,y)
Note that it takes two values before calculations can start.
Reduce is equivalent to:
 p:=initialValue;
 foreach i in (items)
 { p=f(p,i,static parameters) }
Examples:

● To calculate the maximum string length of a list of strings:
names:=L("Fred","Sam","Theodore");
names.apply("len") // → L(4,3,8)
 .reduce((0).max) → 8
The functions calls are: 0.max(4,3), 0.max(4,8)

● To find the longest name:
names.reduce(fcn(x,y){ if (x.len()>y.len()) x else y })
→ “Theodore”

● To concatenate the names99:
names.reduce(fcn(x,y){String(x," ",y)},
 "The names are:") → “The names are: Fred Sam Theodore”

99 Or use the concat method

 197

Objects

● If the initial value is a data sink, reduce can act as a data pump. To send the names
through a pipe:
names.reduce(fcn(pipe,name){pipe.write(name)}, pipe);
(pipe.write returns the Pipe)

● Sum a list: L(1,2,3,4,5).reduce('+) → 15
To sum as floats: L(1,2,3,4,5).reduce('+,0.0) → 15.0

● The static parameters can be used instead of variables. For example, to count the number
of times a string occurs in a list of strings:
count:=names.reduce(
 fcn(count,nameFromList,name)
 { return(count + (name==nameFromList)) },
 0,name));
If names == L(“foo”,”bar”) and name == “foo”, then the call sequence is:
 → f(0,"foo","foo") → 0 + 1
 → f(1,"bar","foo") → 1 + 0
 → 1

This is a very powerful method, once you wrap your brain around its capabilities.
See also: apply2
Returns: object

● run([saveResults=False [,static parameters]]):
L(f,g).run() → f(),g() → Void
L(f,g).run(True,a) → L(f(a),g(a))
Run the functions, methods and properties in items and optionally return a list of results.
SaveResults must be True if you want the results, otherwise, you only get side effects.
 T(String.create,Int.create).run(True,123) → L("123",123)
Returns Void or ROList

● runNFilter(highPass=True [,0 [,static args]]):
L(f,g).runNFilter() → (f() or g())
L(f,g).runNFilter(False) → (not (f() and g()))
Run the functions, methods and properties in items and return True when one returns True (or
what_it_returns.toBool() is True, this stops the traversal). Returns False if all of them do.
If highpass is False, the logic is reversed (low pass). Traversal stops when filter.toBool() is False
(and the result is True).
For example:
b :=Atomic.Bool();
list:=L(b.isSet, f);
list.runNFilter() → False if f() returns False
b.set(); list.runNFilter() → True, f is never called
See Also: filter, run
Throws: Yes
Returns Bool.

● runNFilter(Bool,1 [,static args]):
L(f,g).runNFilter(True, 1) → if (f() or g()) index else False
L(f,g).runNFilter(False,1) → if (not (f() and g())) index else False
Same as runNFilter() but, instead of a True/False result, the index of the first success is returned
or False if no pass.
Throws: Yes
Returns: False or Int

● runNFilter(Bool,2 [,static args]):

198 List

Objects

L(f,g).runNFtiler(True, 2) → L(0,5) when f() → 5, g() → “”
L(f,g).runNFilter(False,2) → L(1,””)
Same as runNFilter(Bool,1) but returns the index and result of the item that passes.
Throws: Yes
Returns: False or ROList(Int,items[n]())

● shuffle(): Shuffle the list using Knuth's Algorithm P.
This is an in-place shuffle, so if self is read only, a copy is made and shuffled.
To shuffle [0..51]: (0).pump(52,List).shuffle() or
[0..51].walk().shuffle()
Returns: A shuffled list.

● sort(): Sort the list. This usually only works for homogeneous lists (all of the items are of the
same type).
Examples:
 L(4,23,6,1).sort() → L(1,4,6,23)
 L("one","two","3").sort() → L(“3”,"one","two")
 L(1,"two",3).sort() generates an error
If the list contains Classes, and those classes implement __opGT, the list can be sorted.
Throws: Mostly conversion errors.
Returns: self or a sorted ROList

● sort(cmpFcn='<): Sort the list, using a compare function. This allows the programmer to decide
how a list is to be sorted, for example, in reverse.
The compare function takes two parameters and returns True if the first parameter is considered
smaller than the second (for an ascending sort).
Examples:
 L(4,23,6,1).sort('<) → L(1,4,6,23)
 L(4,23,6,1).sort('>) → L(23,6,4,1)
 L("one","two","3").sort('>) → L("two","one","3")
 T(T("two",2),T("one",1)).sort(fcn(a,b){a[0] < b[0]})
 → L(L("one",1),L("two",2))
Returns: self or a sorted ROList

● sum(initialValue=0): Add up all items. The initial value determines the type of the value:
 L(1,2,3).sum() → 6
 L(1,2,3.5).sum() → 6 but L(1,2,3.5).sum(0.0) → 6.5
 L(1,2,3.5).sum("")→ “123.5”
Throws: Yes, if there are type mismatches
Returns: self

● zip(objects): Creates a new list of lists: Each sublist consists of one item from each of the
source lists.
 T(1,2).zip(T(3,4),T(5,6)) → L(L(1,3,5),L(2,4,6))
 T(1,2).zip(T(3,4),"abcd") → L(L(1,3,"a"),L(2,4,"b"))
Returns: List of lists

● zipWith(f,objects): Apply f to slices of each list.
This is List.apply applied “vertically”. A slice is taken through each list and that slice is used as a
parameter list for f, which can be anything that is callable. The result is added to a list of results.
The shortest list determines the length of the result.
Names in other languages for similar functionality: map2 and mapcar.
Examples:
 T(1,2,3).zipWith(List,T(4,5,6),T(7,8,9,10))
 → L(L(1,4,7),L(2,5,8),L(3,6,9))

 199

Objects

 T(1,2).zipWith('+,T(3,4),L(5,6,7,8)) → L(9,12)
Returns: List

Properties
● isReadOnly:

Returns Bool.
● isThreadSafe:

Returns Bool.
● type:

Returns “List”, “ROList” or “TSList”.

Operators
● eq (==): Not thread-safe. Returns True if two lists are the same length and contains the same

objects (as described in holds). Contained lists are recursively compared. If you just want to
know if the two lists are the physically the same, you could use list1.id==list2.id.

● neq (!=): not eq. Not thread-safe.
● add (+): thread-safe Append the second operand to items: items.append(x)
● mul (*): Not thread-safe. Make n [shallow] copies of self. If n isn't a number or is less than zero,

self is returned. For example, L(5,6)*2 → L(L(5,6),L(5,6))
● sub (-): thread-safe Remove the second operand from items: items.remove(x) (doesn’t throw)

Discussion
Lists are what programmers think of when the word “list” is used. A list can contain any object in any
arrangement. It is common for a list to contain objects of two or more types (for example, integers and
floats or integers and strings). Lists grow and shrink as needed, they are not fixed in size (fixed lists do
exist, see ROList).

More Fun Things You Can Do With Reduce
Reduce is very powerful and generally useful method. Here are a few things it can be used for.

● Summing and concatenating:
L(1,2,3).reduce('+) → 6
L(1,2,3).reduce('+,"") → “123”
L(1,2,3).reduce('+,"", ",") → “1,2,3,”
L(1,2,3).reduce('+,"", ",")[0,-1] → “1,2,3”

● Maximum:
L(1,3,2).reduce(fcn(x,y){if (x > y) x else y}) → 3
L("one","two","three").reduce(fcn(x,y){ x > y and x or y})
→ “two”

● Longest string:
L("one","two","three","four")
 .reduce(fcn(x,y){if (x.len() > y.len()) x else y})
→ “three”

● Looping: The rolling sum can be used as an index. In this example, we need to process a list
while processing another list; ie a nested loop. But we don't want to use foreach, that would be
gauche. An example of our two lists: L(1,3,5) and L(L(),L(),L()). The result: L(L(1),L(3),L(5)).
The how:

200 List

Objects

results:=L(L(),L(),L());
L(1,3,5).reduce(
 fcn(n,x,results){ results[n].append(x); n+1 },
 0,results);

Rules for Offset
● The first item is zero: [0].
● The last item is [-1].
● If offset is < 0, it is added to the length. It is an error if the result is out of bounds.
● Offset = * ≈ offset = length
● If length isn't present (ie list[offset]), length defaults to 1.
● list[offset] returns one item or throws an error.

Rules for Length
● The default for length is 1.
● “*” is short hand for the number of items. [0,*] is the entire list, [n,*] is the rest of the list,

starting at the nth item.
● If length is < 0, it is recalculated to be the number of items available plus length. It is an error if

the result is out of bounds. For example, if there are three items, then [0,-1] ≈ [0,2], [1,-1] ≈
[1,1], [2,-1] ≈ [2,0], [0,-2] ≈ [0,1].

● If offset + length is greater than the number of available items, length is truncated to what is
available.

● If offset is out of bounds, the (calculated) range is out of bounds, or length is zero, L() is
returned.

Rules for the Sake of Rules
● Methods that do traversals do so in order from smallest offset to largest (to preserve order or for

the sake of side effects). This can be relaxed if there are no side effects (eg to take advantage of
parallelism) but the result is as-if the operation was ordered.

 201

Objects

Method

Inherits from: Object
Notes

● You may need to put the object in parenthesis to access the method. For example, to access the
“method” method of an integer, (1).method works but 1.method is a error (it looks too much
like a floating point number).

Abstract
Method is the Object that wraps “uncalled” methods calls. A Method can be treated like any other
object.

Methods
● defer([parameters]): Returns Deferred(self,parameters). For example,

f:=fcn{"Thread"}.future.defer() delays spawning a thread until f is used (such as f+1 →
“thread1”).
Returns: Deferred

● future(): Run this method in a thread.
Returns: future (a Deferred)

● toBool():
Returns: True

● toString(): Returns “Method(instanceName.methodName)”.
For example: List.append.toString() → “Method(List.append)”.
The works by back tracing the method in the object. If the object has multiple names for the
same method, one of them is used.
Returns: String

● unbind(): Deletes the bound instance. When the Method is called, the new instance must be
passed in as the first parameter.
Examples:
"foo".len()→3 but "foo".len.unbind()("hoho")→ 4
m:="".translate.unbind().fp1("123","321");
m("a:1 b:2 c:3")→ “a:3 b:2 c:1”
Returns: new Method

Properties
● instance: The instance that this method is bound to. For example, "foo".len.instance

returns “foo”, L().Method("append").instance.name returns “List”.
Returns: Object

● methodName: Returns the name of the method. Eg "foo".len.methodName returns “len”.
Returns: String

Discussion
The Method object is what C programmers would call a “pointer to function” with a lot of baggage
attached. It can be passed around, stored in other objects, etc, just like any other object. It always
remains bound to the instance it was created with and will keep that instance from being recycled by the

202 Method

Objects

garbage collector (until itself is collected). So, in the far future, you can call it or, long after you’ve lost
track of the instance, you can use it to regain contact with that lost instance.

Method objects are automatically created upon access. For example, method="foo".len;
creates a Method object wrapping the string “foo” and method “len”. Invoking the method via method()
returns 3.

Methods can also be created explicitly: "foo".Method("len") → Method(String.len)

If you want to bind parameters to the Method, you can do so with the “fp” methods. For example,
 title = Console.println.fpM("101","<title>","</title>")
 creates a Method that prints a HTML title: title("Hello") → “<title>Hello</title>”.

 203

Objects

MinImport

Full name: [TheVault.]MinImport
Inherits from: Class
See Also: Objects.Import, Objects.System.classPath, Keywords.AKA
Notes

● MinImport("foo") is the same as MinImport.import("foo")
● Use a class name. This will search the Vault first and save a lot of resources if the class has

already been loaded. For example, MinImport("Compiler.Compiler")
● If you need to bypass the Vault and only load from the file system, use “filename.zsc” instead of

the class name. For example, MinImport("Compiler/compiler.zsc")

Abstract
A minimal version of Import. It loads a compiled class from the Vault or the file system.

Functions
● import(rootClassName, addToVault=False, runConstructor=True)

Throws: LoaderError, others
Returns: class

● init(rootClassName, addToVault=False, runConstructor=True)
Returns: import(rootClassName,addToVault,runConstructor)

Discussion:
Find a class in the Vault or, if not there, look in the file system for the compiled class. For example,
MinImport("Compiler.Compiler") looks in the Vault for Compiler.Compiler and, if found, returns it.
If the compiler hasn’t been loaded yet, it will root around in the file system, looking in places pointed to
by System.classPath for the class, and, if found, load the class with System.loadFile. If addToVault is
True, the loaded class will be put into the Vault, using the vault path specified by the AKA keyword.

The conversion from class name to file name is simple: “.” is replaced by “/” and “.zsc” is appended. On
Unix, the last part of the file name is case folded. Examples:

● “Import” → “Import.zsc”. Case is ignored on Windows and Unix.
● “Compiler.Compiler” → “Compiler/Compiler.zsc”. On Unix, case is ignored for “Compiler.zsc”

only.

204 MinImport

Objects

Network.TCPClientSocket

Full name: [TheVault.]Network.TCPClientSocket
Inherits from: Object
See Also: Appendix D, A Toy Web Server, zklCurl, a web extension library

Abstract
A TCP/IP client socket. Used to connect to web servers and things like that.

Methods
● addrInfo(addr): Get information about something at the other end of a IP address or host

name. This method is a utility method and has no effect on, and is not affected by, the current
state of the socket.
Returns a list of three items:

● Canonical name of the host (String).
● IP addresses for this host (List of Strings).

For example: Network.TCPClientSocket.addrInfo("www.google.com ") might return:
 L("www.google.com",
 L("173.194.33.113", "173.194.33.112",
 "2607:f8b0:4005:800::1014"))
addrInfo("localhost "): L("core-shot", L("127.0.0.1"))
addrInfo("127.0.0.1"): L("localhost", L("127.0.0.1"))
addrInfo("::1"): L("::1",L("::1"))
IPv6 ready (usually).
Returns: List of lists

● close(): Closes the socket.
It is OK to close a closed socket.
Returns: self

● len(): Returns the number of bytes currently sitting in the read buffer. Might not be the number
of bytes that a read() will actually return but it should be close.
Returns: Int

● connectTo(serverName, port): Connect to a server socket (such as a web server, port 80).
The server name is a address that addrInfo might return (or accept).
Returns: new TCPClientSocket that can write to the server

● read([False]): Not thread-safe. Read the bytes currently in the socket and
 returns them. If empty, wait for some data to show up.
If the number of bytes returned is zero, that means the socket has been closed.
Throws: IOError
Returns: Data

● read(n): Read n bytes from the socket. If more than n bytes are available, only n of them are
returned. If less than n are available, waits for the rest to show up.
Throws: IOError, TheEnd. If TheEnd is thrown, it is because the other end of the socket was
closed. In this event, consider all data in transit lost.
Returns: Data

 205

http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/
http://www.google.com/

Objects

● read(True): Read until the socket closes. If the number of bytes returned is zero, that means the
socket has been closed. In the normal case, you call read(True), get a bunch of data, and call it
good.
Throws: IOError
Returns: Data

● toBool(): True if the socket is open. This might not reflect the true status (see warnings for
why).
Returns: Bool

● wait(timeout=block): Waits for activity on the socket.
To poll for activity on a list of sockets:
 fcn testSocket(s){ s.wait(0)!=False }
 while(not (s:=sockets.filter(testSocket)))
 { Atomic.sleep(0.05) }
 // s has the sockets with data or have closed
Returns: 1 if there is data waiting, False if no data is waiting, Void if there was an IOError (such
as the socket is closed).

● write(data,...): Not thread-safe. Write a String, Data, List, or Int object to the socket.
Here are the bytes actually written:
Object What is written

Data The bytes in Data

Int The LSB (Least Significant Byte) ≈ int[0] ≈ int.bitAnd(0xFF)

List Recursively writes the contents of the list.

String The bytes in the string. write(“foo”) writes three bytes.
Throws: IOError, TheEnd. If TheEnd is thrown, it is because the other end of the socket was
closed or the connection has been broken. In this event, consider all data lost.
Returns: Int (the number of bytes written)

Properties
● hostAddr: The IP address of the host this socket is connected to. For example: “127.0.0.1” or

“72.14.253.99”.
● hostName: The canonical name of the host this socket is connected to. For example:

“www.google.com”.
● isClosed: Returns True if the socket is not open (ie never opened or has been closed).

Returns: Bool

Operators: None

Warnings
● You may not be able to tell that the socket has been closed until you attempt to read from, or

write to, it. This is because if the other end of the socket is closed, that event might not propagate
until access is attempted.

206 Network.TCPClientSocket

Objects

Discussion
These TCP/IP sockets are much higher level than most socket packages but you still have to do a bit
fiddling to use them, and it helps to know about sockets. Since they attempt to hide much of the socket
details, they are not very general.

TCP/IP sockets are byte streams. You can, for example, serialize a class through a socket:
Compiler.Asm.writeRootClass(self,socket);

Note: Sockets are for two processes to talk to each other, just like two people talking on a phone.
Attempting to use a socket like party line will be just as pleasant, so don't do that. For threads, Pipes will
probably work better.

Example: Connect to a Web Server

Talking to web servers requires that you speak HTTP100, the language of the web. TCP/IP sockets are
used to connect to web servers. Some web servers (like Apache) will close the socket after a request,
other (like Google's GWS) don't101.

Requesting a web page from an Apache server102:
 hp :=Network.TCPClientSocket.connectTo("www.hp.com",80);
 data:=hp.write("GET / HTTP/1.1\r\nHost: www.hp.com\r\n\r\n")

 .read(True);
 println(data);
[Note: In the HTTP GET request, the first parameter after “GET” is the page requested, in this case, “/”,
the “root” page. Your home page is probably something like “/~joe/”.]
Prints Data(67893). Who ever thought a web page could be so big?
 print(data.text);
Prints the response header and HTML that makes up the web page:

HTTP/1.1 200 OK
Date: Fri, 23 Feb 2007 06:04:59 GMT
Server: Apache
Expires: Fri, 23 Feb 2007 08:04:59 GMT
Connection: close
Transfer-Encoding: chunked
Content-Type: text/html

1000
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.or
g/TR/html4/loose.dtd">
<HTML lang=en-us>
<HEAD>
…

To get a web page from a server that doesn't close the request socket takes more work. There are two
approaches; one is to use an older protocol and the other to parse the output. For this example,

100http://wikipedia.org/wiki/Http and RFC 2616 (http://tools.ietf.org/html/rfc2616).
101HTTP 1.0 responses are usually all at once, HTTP 1.1 can be chunked
102Some web server are picky about the amount of time between the opening of the socket and the receipt of the request (for

example Google). So, if you are typing a request in the shell, you might want to do it on one line.

 207

http://www.hp.com/
http://tools.ietf.org/html/rfc2616
http://wikipedia.org/wiki/Http

Objects

www.google.com is used. The GWS server doesn't close the connection after a request with the HTTP
1.1 protocol but does if the request is made with the HTTP 1.0 protocol. Using HTTP 1.0 is easy:
 google:=Network.TCPClientSocket.connectTo("www.google.com",80);
 data :=google.write(
 "GET / HTTP/1.0\r\nHost: www.google.com\r\n\r\n")

 .read(True);
 print(data.text);
Response:

HTTP/1.0 200 OK
Content-Type: text/html
Server: GWS/2.1
Date: Sat, 24 Feb 2007 21:27:15 GMT
Connection: Close

<html><head>
…

The GWS server returns a different response for HTTP 1.1 requests. To get that page, the response has to
be parsed to know when to stop because the connection isn't closed. We'll cheat, based on advanced
knowledge, and look for a block length of zero. This is a very simple test and will fail in other cases. An
equally lame test is to look for “</html>”.
 serverName:="www.google.com";
 server:=Network.TCPClientSocket.connectTo(serverName,80);
 server.write("GET / HTTP/1.1\r\nHost: %s\r\n\r\n"
 .fmt(serverName));
 while(1){
 text:=server.read().text;
 print(text);
 if (text.find("\r\n0\r\n")) break; // lame test 1
 // if (text.find("</html>")) break; // lame test 2
 };
 server.close();

Response (comments in bold):
HTTP/1.1 200 OK
Content-Type: text/html
Server: GWS/2.1
Transfer-Encoding: chunked
Date: Sat, 24 Feb 2007 21:38:10 GMT

f19 ← block length (in hex)
<html><head>
…
 About Google<p> …
Google</p></center></body></html>[carriage returrn]
0 [carriage return][line feed] ← block length

This is a lame test for a couple of reasons: The Content-Type isn't checked to to see if it is chunked or
not, and, most important, there is no way of knowing that read will contain all of the bits we are
searching for (they could very well be split across reads). But, then again, we aren't writing a HTTP
client either.

208 Network.TCPClientSocket

http://www.hp.com/
http://www.google.com/

Objects

Example: The Client Side of a Socket Based Client/Server Application
To connect to programs via the network, sockets are ideal. You need a server (see TCPServerSocket) and
one or more clients. The client connects to the server and, once a connect has been made, reads data
from, and writes data to, the server. A peer to peer program is one where two or more clients talk to each
other but a server is usually required to provide a known point of contact so that clients can connect to
each other.
 const serverAddress="localhost"; // or "127.0.0.1"
 const port =50000; // FreeBSD can be picky
Since the client and server are running on the same computer, the server is the “local host”. The TCP
port is some arbitrarily big number. If the client and server were running different computers, the
address would be different and you would probably have to configure your firewall to allow
communications.

Now we create the client. Since the server might not be running yet, we'll retry a few times before giving
up.
reg clientSocket;
println("Connect to server at %s:%s...".fmt(serverAddress,port));
do(3){
 try{ clientSocket=
 Network.TCPClientSocket.connectTo(serverAddress,port); }
 catch(IOError){ // server not available, wait a bit
 println("Waiting for server ...");
 Atomic.sleep(10);
 }
 else{
 println("Connected!");
 break;
 }
}
if (not clientSocket)
 throw(Exception.BadDay("Socket server not available"));

Now that a connection has been established with the server, fake up some data to send to the server.
Sockets are byte streams, meaning there are no “breaks” in the data, you really do need to treat it as one
stream of bytes that start at the first write and end when the socket is closed. Thus, even though you
write chunks of data, it is very possible you'll read different sized chunks, you only know that you'll get
all the data. So, to make sense of the stream, you need to impose your own order on the stream. To do
this, we'll use a very simple text based “packet” protocol: <one byte length><text>.
Here is the function to create a packet.
fcn createPacket(msg){
 p:=Data();
 p.append(msg.len(),msg); // Data.append() returns self
}103

Now to write the data to the server. For this very simple example, we'll only encode the data in one
direction. The amount of data read will depend on network latency. [Note: this example won't work until
the example server has been started].

103If you want to be overly clever:
 fcn createPacket(msg){ Data(0,0,msg.len(),msg); }

 209

Objects

packets:=L("one","this is a test");
foreach packet in (packets){
 clientSocket.write(createPacket(packet));
 data:=clientSocket.read();
 println(data.text); // print what the server sent us
}
clientSocket.close(); // tell server this client is done

Now we'll create another client to tell the server to shut down. “STOP” is the magic keyword.
ClientSocket:=
 Network.TCPClientSocket.connectTo(serverAddress,port);
clientSocket.write(createPacket("Should be in another thread"));
clientSocket.write(createPacket("STOP"));
clientSocket.close();

All done with this example. One thing we do need to be careful of is when the program exits to the OS,
the OS will clean up the socket. If the server is in the middle of a read, that read will break. In this
example, we won't care.
println("Client done");

The output looks like:
 Connect to server ...
 Waiting for server ...
 Connected!
 Server received a data packet of length 3 // sent to me from the server
 Server received a data packet of length 14
 Client done

Network.TCPServerSocket

Full name: [TheVault.]Network.TCPServerSocket
Inherits from: Object
See Also: Appendix D, A Toy Web Server

Abstract
A TCP/IP server socket. Used to create things that client sockets can connect to.

Methods
● close(): Closes the socket. If the socket is listening, it will stop.

It is OK to close a closed socket.
Returns: self

● listen(handlerFcn|Pipe|Method): Not thread-safe. Start accepting requests from client
sockets that are connecting to this machine and port. When a client socket connects (possibly
from a remote machine), the server creates a new (local) client socket and calls
handlerFcn(newClientSocket,self). The handler should be quick so that the server can get
back to listening. A handler might create a thread that connects the two clients sockets. The
server continues to listen until it is closed.

210 Network.TCPServerSocket

Objects

The OS starts queuing requests to a server socket when the socket is opened so a client can
actually write before the server socket starts listening and the request won't be missed.
The the handler is a Pipe/Straw, Pipe.write(0,clientSocket) is called.
The handler return value is ignored.
If the handler throws, the server socket stops listening but remains open and listen can be re-
called.
Throws: IOError
Returns: self when self is closed.

● open(port): Open a TCP/IP server socket on localhost at port. This creates a new server socket
that ready to start listening for client sockets. Use listen to actually accept connections.
Throws: IOError
Returns: New server socket

● toBool(): True if the socket is open.
Returns: Bool

Properties
● hostname: Returns the name of the server.

“” if the socket hasn't been opened yet.
See also: TCPClientSocket.addrInfo, Objects.System.hostname.
Returns: String

● isClosed: Returns True if the socket is not open (ie never opened or has been closed).
Returns: Bool

● isListening: Returns True if the socket is actively listening.
Returns: Bool

● port: Returns the port the server was opened on. Zero if the server hasn't been opened.
Returns: Int

Operators: None

Discussion
A very simple client/server example:
const port=50000;
out:=Thread.Pipe(); ab:=Atomic.Bool();
ss:=Network.TCPServerSocket.open(port);
cs:=Network.TCPClientSocket.connectTo("localhost",port);
 // create thread that listens to server socket
fcn(ss,out,ab){ ss.listen(out,ab) }.launch(ss,out,ab);
ab.wait();
 // kick the server, write 4 bytes to the socket it creates
cs.write("hoho");
ss.close(); // close server socket and stop thread
out.read().read().text.println(); // Pipe(socket(Data(4 bytes)))
Running this code snippet will print “hoho”

Example: The Server Side of a Socket Based Client/Server Application
Here is the server side of a very simple TCP/IP based client/server application. This can be running on
same machine as the client or on any computer that can be reached by a TCP/IP network (modulo any
firewalls). The client and server can even be in the same program but that doesn't make a lot of sense.

 211

Objects

Read the client side example first, then this one.

First, create the server socket on some random port.
const port=50000;
serverSocket:=Network.TCPServerSocket.open(port);
println("Server started at %s:%d"
 .fmt(serverSocket.hostname,serverSocket.port));

Now create the server. Yes, it is this simple:
try{ serverSocket.listen(handler); } catch(IOError){}
That is because this is a very simple server. It just waits for a client to request a connection, and when
one does, it punts the request to a function to do the actual work. And then it goes back to waiting. If the
server socket is closed, the server stops. In fact, that is the only way to stop the server, other than
throwing an exception at the VM it is running in.

Again, in a real program, we might need to wait a bit to let the threads finish and make sure the client
has cleaned up before exiting to the OS.
println("Server done");

Here is the function that handles a new client connect request. It needs to be very simple so the server
can get back to work (since it is running in the same thread as the server). So it just creates a new thread
to deal with the client.
fcn handler(socket,erver){
 Handler().launch(socket,server);
}

Here is where most of the work happens.
This class is a thread that is created each time a new client connects to the server. Thus, there can be
more than one client connected at a time.
The thread is started with the remote client socket and the server socket. It then reads a data packet,
prints it out, writes the packet length to the client and repeats until the client closes the socket.
If “STOP” is received, the server socket is closed, telling the server to exit.
class Handler104{
 fcn liftoff(socket,server){
 println("\n—---------------"
 "Socket handler started in ",vm);
 while(1){
 packet,len:=readPacket(socket);
 if (len==0) break; // client closed socket
 println("Received: ",packet);
 if (packet=="STOP"){ server.close(); break; }
 socket.write(
 "Server received a data packet of length ",
 .fmt(len));
 }
 println("Client closed socket, stopping this thread.");
 socket.close();
 }
 // to be continued …

212 Network.TCPServerSocket

Objects

The packet reader/decoder is pretty simple. The first byte of our very simple protocol is the length of the
message and is followed by that many characters (bytes). So, first read one byte. If we can't do that, it
means the socket has closed. Otherwise, read the rest of the packet and return the text and packet length.
This is wrapped in a try block to catch the client closing the socket (TheEnd is thrown by read(n) on an
attempt to read from a closed socket). If the socket does close, all data in it is gone, so return an empty
packet.
 fcn readPacket(socket){
 try{
 data :=socket.read(1);
 len :=data.bytes(0);
 packet:=socket.read(len).text;
 return(packet,len);
 }catch(TheEnd){ return("",0); }
 }
} // class Handler
Output:

Server started at core-shot:50000

Socket handler started in VM#2
Received: one
Received: this is a test
Received:
Client closed socket, stopping this thread.

Socket handler started in VM#6
Received: Should be in another thread
Received: STOP
Client closed socket, stopping this thread.
Server done

Talking to a Terminal

Sockets are used to talk to TCP terminal emulators such as HyperTerminal. Here is a tiny telnet server:
var terminal;
Network.TCPServerSocket.open(23)// Port 23: default telnet port
 .listen(handler); // wait for connection
fcn handler(s,server){ // terminal connected
 terminal=s;
 server.close(); // stop listening so we can talk
}

104This could be a declared a static function (actually, the compiler does that for us) as it has no instance data. Which
reduces the amount of memory that needs to be allocated.

 213

Objects

terminal.write(GREEN,"> ",BLACK);
line:=Data();
while(1){
 char:=terminal.read(1); terminal.write(char);
 if (char.text=="\r"){
 if (line){ println(line.text); line.clear(); }
 terminal.write("\n",GREEN,"> ",BLACK);
 }
 else line.append(char);
}
// ANSI color escape sequences
const ESC ="\x1b";
const BLACK =ESC + "[30m";
const RED =ESC + "[31m";
const GREEN =ESC + "[32m";
const YELLOW =ESC + "[33m";
const BLUE =ESC + "[34m";
const MAGENTA=ESC + "[35m";
const CYAN =ESC + "[36m";
const WHITE =ESC + "[37m";
Run the server and then connect to it with a TCP terminal such as HyperTerminal. Use a TCP connection
to “localhost” (if the running on the same machine as the server), port 23. The server will send a green
“> ” as prompt and will echo typed characters. This server is way to limited to work with telnet.

214 Network.TCPServerSocket

Objects

Object

Abstract
Object is the object that all other objects are built from. Object’s are virtual and don’t exist on their own,
only as the parent of another object.

Objects that inherit from Object will overwrite one or more of these methods, properties and operators.
Look there first for information, and then look here.

Methods
Functions marked Reserved means you can't use that name for a function, class or variable.

● BaseClass(name): Reserved. In the case of a Class, this is equivalent to class.Class.name,
otherwise, it is equivalent to object.Object.name (Method or Proptery), if such syntax existed. In
most cases, resolve and BaseClass will return the same value.
The compiler is kind enough to convert x.BaseClass.y to x.BaseClass("y"). Thus
x.BaseClass.id and x.BaseClass("id") are the same.
For example:

● The Exception class overwrites the toString method. So
Exception.resolve("toString") returns the Exception Class function “toString” but
Exception.BaseClass("toString") returns the Class method “toString”.

Who cares? Mostly compiler writers. In general, if you want to be sure you are accessing
something in Object or Class and not in the class itself or things it inherits from, or something
bad will happen if you need to call an Object method and don’t (because it has been overwritten),
use BaseClass. One place where this happens frequently is with the name property (because
“name” is a popular name). In another case, it is the only way to access the methods of TheVault.
Of course, some Objects just can’t play nice, for example, Language’s name property.
Throws:
Returns: Method or property value

● copy(): Returns self.
● create(parameters): The create method is roughly equivalent to “new” in C++.

Create is called to create a new object instance. Most objects can create instances of themselves;
they can replicate themselves.
For example:

● L(1,2,3) calls List.create(1,2,3) which creates a List with three elements.
● L(1,2,3)(4,5,6) creates two lists; first, one with elements 1, 2 and 3 and second, one

with elements 4, 5, and 6.
● x=1; y=x(2); sets variables x to integer 1 and y to integer 2. This is the same as

x=1; y=2;
Class creation is a bit more complicated, the compiler and the VM work together to create new
class instances. Classes don't implement a create method; if, for some reason you want to create a
new class instance outside of the usual channels, use copy.
Throws: NotImplementedError
Returns: Doesn't. Object doesn't implement this method.

● dir(): Print interesting information about self.

 215

Objects

● fp(parameters): Fixes the parameters as the first parameters to self. This is a closure of self
over the parameters aka partial function application105 of the parameters, which is also related to
currying106.

● p:="".fp("foo") ≈ String.Method("create","foo")107

p("bar") ≈ String.create("foo","bar")→ “foobar”
p("b","a","r") → “foobar”

● df:=fcn f(x,y){ x/y }.fp(10);
df(2) → f(10,2) → 10/2 → 5, df(3) → 3

● df:="%d %d".fmt.fp(1);
df(2) → “1 2”, df(3) → “1 3”

Closures are “stackable” (function composition):
 fcn f(x,y,z){ "%s%s%s".fmt(x,y,z) }
 pf1:=f.fp(1); pf2:=pf1.fp(2); pf3:=pf2.fp(3);
 pf3() → “123”
Note that composition doesn't always work. If we want to compute f(g(h(x)), then
f.fp(g.fp(h))(x) doesn't work as x is passed to f, not h. Use Objects.Utils.Helpers.fcomp or
fcn fgh(x){f(g(h(x)))} or f.fp(g.fp(h.fp(x)))() (if x is fixed).

An infinite Fibonacci sequence:
 var fib=fcn(ab){ ab.append(ab.sum()).pop(0) }.fp(L(0,1))
 do(15){ fib().print(",") }
 → 0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,
 fib() → 610, Utils.wap(fib).walk(5) → L(987,1597,2584,4181,6765)
Returns: Function of reduced arity (a Deferred closure).

● fp1(parameters): Fixes all parameters but the first: parameters are fixed as the 2nd through Nth
parameters to self, returning a function of one parameter, the first.
 fcn f(x,y,z){ x+y+z }
 g:=f.fp1(2,3); // g(x) → f(x,2,3)
 g(1) → f(1,2,3) → 6, g("1") → “123”
This is useful for wrapping Methods that need more than one parameter.
Returns: Function of one parameter (a Deferred closure).

● fp2(parameters): Fixes parameters after the first two: parameters are fixed as the 3nd through
Nth parameters to self, returning a function of two parameters.
Note: Parameter initializers for the first two parameters are ignored.
 f:=fcn(a,b=4,c=5,d=6,e=7){}.fp2(9);
 f("a","b","c","d") → f("a","b",9,"c",7)
 f() and f("a") are undefined.
 fcn g(a,b,c){ String(a,b,c) }
 h:=g.fp2(1); h=h.fp1(2); h=h.fp(3);
 h() → “321”
but h:=g.fp(1); h=h.fp1(2); h=h.fp2(3); h() doesn't work (b isn't defined); it should be
written h:=g.fp(1); h=h.fp(2); h=h.fp(3) or h:=g.fp(1).fp(2).fp(3)
Returns: Function of two parameters (a Deferred closure).

● fpN(n,fixedArgs): Fixes parameters after the first n. When called, the caller supplies [at least]
n parameters. Given f.fp(n,a0 … ai)(p0 … pj), the resulting call is:

f(p0 … pn-1, a0 … ai, pn … pj)

105http://en.wikipedia.org/wiki/Partial_application
106http://en.wikipedia.org/wiki/Currying
107If Method took fixed parameters, which it doesn't, which is why .fp exists

216 Object

http://en.wikipedia.org/wiki/Currying
http://en.wikipedia.org/wiki/Partial_application

Objects

If there are not at least n p's, the result is undefined.
If f is itself a closure (of g), then g gets the combined/new parameters. This effectively makes
evaluation right to left (right associative)108.
Returns: Function of n parameters (a Deferred closure).

● fpM(mask,fixedArgs): Fixes arbitrary parameters to self. This is a generalization of fp. Mask is
a bit string that consists of “1” (fixed parameter) or “0” (parameter supplied on call) for each
parameter that self takes. A “-” says to chop all parameters at that point.
 fcn f(x,y,z){ "%s%s%s".fmt(x,y,z) }
 p:=f.fpM("101",1,3); p(2) → “123”
Notes:

● Leading zeros may be required. For example, f.fpM("001",a) is very different from
f.fpM("1",a).

● Any fixedArgs after mask.len() are ignored. Any call parameters after zeros.len() are
appended.

● The reason a mask string is used (vs named parameters) is Methods109:
 pf:="%d%d".fmt.fpM("01",123);
 pf(4) → “4123”

● f.fpM("0") → f
● f.fpM("1",a) → f.fp(a), f.fpM("01",a) → f.fp1(a), f.fpM("001",a) →

f.fp2(a), f.fpM("0001",a) → f.fpN(3,a) and so on.
● f.fpM("") and .fpM("-") mean that f doesn't want any parameters, no matter what it is

called with. For example, readln in a walker or pump.
● f.fpM("0") means use only the first passed parameter and ignore the rest (if any). This is

useful for passing Methods to things that will call that method with extraneous
parameters that would conflict with defaults.

Returns: Function of reduced arity (wrapped in a Deferred closure).
● isChildOf(object): Returns False. Class makes this useful.
● isInstanceOf(object): Returns obj.type(object). Class and fcn makes this useful.
● isType(object [,object …]): Returns True if self and object are the same type. The

parameter is an object, not a name or id. For example:
 (1).isType(Int) returns True.
 (2).isType(3) returns True.
 (2).isType("2") returns False.
If you want to check for a Class, use self; function, use self.fcn; Method, use
NullClass.Method; Property, use NullClass.Property (but NOT self.Property).
x.isType(List) is slightly more efficient than x.isType(L()) but are otherwise the same.
Since “”, 0, and 0.0 are cached, the only difference using these objects vs the Vault names is
aesthetic; which do you prefer: x.isType("") or x.isType(String)? Use that one.
If there more than one parameter, True is returned if self matches any of them.
Returns: Bool

● len(): Returns 0.
● Method(name): Search the methods for Method name. If found, returns the Method.

For example:
"foo".Method("toString") returns Method(String.toString).

108Without fixing parameters by name, chained fp's are largely unmanageable anyway.
109Methods don't have a prototype that names the parameter list. Besides, a functions prototype may not reflect all the

possible parameter lists.

 217

Objects

 "foo".Method("notfound") throws NotFoundError.
Throws: NotFoundError
Returns: Method

● method(name): The same as Method(name). This exists for symmetry with property.
Throws: NotFoundError
Returns: Method

● method(name,True): Just check to see if there is a method that goes by name. Returns True if
there is.
Returns: Bool

● method(index,methodIsInstance=False): Returns the name of a method. This is symmetrical
with method(name,False):
 "".method("len",False).xplode() : "".method(_) → “len”
Returns: String (“” if out of range)

● noop(): Does nothing and returns self.
● print([parameters]): Shorthand for Console.print(obj,parameters).

Returns: String
● println([parameters]): Shorthand for Console.println(obj,parameters).

Returns: String
● Property(name [,var]): Search self for a variable (if self is a class) or property and return a

Property object for it. This allows you to treat a variable or property like a method or function.
For example:
 p=self.Property("name");
 p(); // same as self.name or self.property("name")
Parents are not searched.
The “var” parameter allows you restrict searches when using Property with classes:
klass.Property(name,0) ≈ klass.Property(name)
 klass.Property(name,1): Search only variables
 klass.Property(name,2): Ignore variables
 object.Property(name,?) ≈ object.Property(name)
A class variable exits if klass.Property(name,1) doesn't throw.
Throws: NotFoundError
Returns: Property

● property(name): Search the properties for a property named name. If found, return the value of
that property. Unlike Property, it does not look at variables.
 "foo".property("id") might return 15175936.
Throws: NotFoundError
Returns: object

● property(name,True): Just check to see if there is a property that goes by name. Returns True
if there is.
Returns: Bool

● resolve(name): Reserved. Search self for a method or property named name and return it. The
name is a string.
For example:
"foo".resolve("id") might return 22591048
 "foo".resolve("len") returns Method(String.len), which is a Method object.
See also: Objects.Class.resolve

218 Object

Objects

Throws: TypeError if name is not a String, NotFoundError if name is not found. Also TypeError,
IndexError.
Returns: object

● resolve(name,N|*): This variant checks for methods or properties named name and returns a
non-zero result if it found.

● N==1: Check for method. Result is MethodType.
● N==2: Check for property. Result is PropertyType.
● *: All of the above. You can also bit or any of these; to check for a method or property:

N=3.
● MethodType and PropertyType are defined in vm.h.zkl; include(vm.h.zkl)
● To just check for existence, use if (object.resolve(name,*)) found();

Throws:
Returns: False, non-zero Int

● __sGet(i): Throws Exception.NotImplementedError
object[i] gets translated into object.__sGet(i).

● __sSet(v,i,len): Throws Exception.NotImplementedError
object[i] = x is translated into object.__sSet(x,i).
object[i,n] = x is translated into object.__sSet(x,i,n).

● toBool(): Throws Exception.NotImplementedError
● toData(): Throws Exception.NotImplementedError
● toFloat(): Throws Exception.NotImplementedError
● toInt(): Throws Exception.NotImplementedError
● toList(): Returns ROList(self).
● toString(): Returns self.name. See Properites.
● toType(object): Convert self to the same type as object (if possible). For example:

x.toType(1.0) ≈ x.toFloat(), x.toType(List) ≈ x.toList(). This is not guaranteed to
work as it has to do some guessing, which goes like this: x.toType(y) →
x.Method("to"+y.type)(x) plus some special casing.
Throws: NotImplementedError, conversion errors.
Returns: object

Properties
● fullName: The name and “path” of self. For example, L().fullName returns “TheVault.List”

and (1).fullName returns “TheVault.Int”. If the object or an instance of the object in in the
Vault, a vault path is returned (which always starts with “TheVault.”), otherwise, self.name is
returned. Classes have a slightly different behavior.
Returns: String

● id: Returns a unique ID for this object. The ID is an int.
● methods: Returns a list containing the names of self’s methods. For example, (Void).methods

returns L(“toBool”, “toString”, “create”, , ...).
● name: Returns the string self refers to itself as. For example, L().name returns “List” and

(1).name “Int”.
● otype: Object Type. Returns the name of the type. For example, (1).otype returns “Int” and

"".otype returns “String”.

 219

Objects

● properties: Returns a list containing the names of self’s properties. For example,
(Void).properties returns L(“id”, “name”, “fullName”, “type”, “otype”, “properties”,
“methods”).

● type: Pretty much the same as otype but defers to object for what it wants to be called. For
example, Time.Clock.type returns “Clock” while Time.Clock.otype returns “native”.

● vaultPath: The place in the vault that this object thinks it should go, if it were to go there.

Operators
● ==: Returns True if both operands are the same object. There are no conversions, no nothing, they

both have to be the same object.
● !=: (obj!=y) returns not (obj==y)
● <, <=, >, >=: Throws Exception.NotImplementedError
● +, -, *, /: Throws Exception.NotImplementedError
● %: Throws Exception.NotImplementedError

Discussion
Object is something that doesn't quite exist. It is used to build all other objects but can't be found “in the
wild”.

220 Object

Objects

Op

Inherits from: Object

Abstract
Op is an Object that wraps operators. An Op can be treated like any other object.
The ops are: =, !=, <, <=, >, >=, +, -, *, /, %, “not”, “--” (two dashes, negate).
As parameters, '+ is syntactic sugar for Op("+").

Methods
● call(a), call(a,b), call(a,b,c...): Perform the operation. Op("+").call(1,2) is

equivalent to 1+2 and call("1",2) → “12”. Likewise for logical: Op("<")(a,b,c) → a<b<c.
If Op has a stored operand, it is used as the second operand for math ops:
 Op("+",1).call(5) → 5 + 1 → 6
For logical ops, it repeated: '>(0)(a,b,c) → (a>0) and (b>0) and (c>0).
For negate and mod, only the first parameter is used.
For not, only the first parameter is used (n:=Op(“not”); n(a,b,c) → n(a)). If there is a stored
operand (ie '!(f)) then '!(f)(i) → (not f(i)).
If this ordering doesn't work for you, use one of the fp methods to change it; for example,
'+.fp("foo")("bar") → “foobar”.
There are several variants, see below for more discussion.
Throws: Unknown
Returns: Unknown

● create(opName [,operand]): Create an Op bound to a op code.
Name:
Sugar:

"=="
‘==

"!="
‘!=

"<"
‘<

"<="
‘<=

">"
‘>

">="
‘>=

Name:
Sugar:

"+"
‘+

"-"
‘-

"*"
‘*

"/"
‘/

"%"
‘%

"not"
‘!

"--" (negate)
N/A

Once an Op has been created, a subsequent call to create is treated as a call.
 op:=Op("+"); op(1,2) → 3
Which means that only the Op in the Vault can create new Ops but you can store that in a var:
var op=Op; anOp:=op("+");
See Syntactic Sugar below.
Throws: NameError
Returns: Op

● toBool():
Returns: True

● toString(): Returns “Op(op)” or “Op(opOperand)”, eg “Op(+)”, “Op(+1)”.
Returns: String

Discussion
Ops are useful where a fcn is just too heavy weight or verbose.
Some examples:

● L(1,2,"3").apply(Op("+"),10) ≈ L(1,2,"3").apply('+,10) ≈
L(1,2,"3").apply('+(10)) ≈ L(1,2,"3").apply(fcn(x){ x+10 })
→ L(11,12,“310”)

 221

Objects

● Quick sort:
fcn qsort(list) {
 if (not list) return(list); // L() → L()
 reg pivot=list[0], rest=list[1,*];
 left,right:=rest.filter22('<),pivot);
 T.extend(qsort(left),pivot,qsort(right));
}
qsort(T(5,3,32,67,2,78,23,542,1)) → L(1,2,3,5,23,32,67,78,542)
qsort("the quick brown fox".split()) → L(“brown”,”fox”,”quick”,”the”)

● Op("+").call(1,2) → 3
● Op("+")(1,2,3) → 6, .call is implicit
● f:=Op("+"); f(1,2,3) → 6

So many options …
The call method can apply the op to lots of parameters. Here are the rules:
 Op(op).call(a1) → error (unless op is “--” or “not”)
 Op(op)(a1,a2) → (a1 op a2)
 Op(op)(a1,a2,a3) → ((a1 op a2) op a3) and so on

 Op(op,X)(a1) → (a1 op X)
 Op(op,X)(a1,a2) → ((a1 op X) op a2) and so on

 Op “--” ignores X and stops at a1.
 Op “not” ignores X and stops at a1.
 Op “%” takes at most two parameters (a1,a2 or X & a1).

The logic ops add a little wrinkle in that they stop if False is generated. So, in
 Op("==")(5,6,launchMissles)
missiles are not launched.
The following are equivalent:
 if(5<x<10) println(x," is between 5 and 10");
 if(Op("<")(5,x,10))println(x," is between 5 and 10");

You can switch the order of the operands by using the fix parameters method. For example, to calculate
the reciprocal of a list:
 [1..5].apply('/.fp(1.0)) → L(1,0.5,0.333333,0.25,0.2)
Revisiting one of the first examples:
 L(1,2,"3").apply('+.fp(10)) → L(11,12,13)

Syntactic Sugar
As a parameter, 'op is converted to Op("op"). See create for the list of sugars.
Thus .filter('>,3) is converted to .filter(Op(">"),3) and L(1,2,3,4,5).filter('>,3) →
L(4,5).
L(1,2,3).reduce('+) → 3.
To include parameters to the op, just pass them as usual. A handy increment operator is '+(1):
T(1,"two",3).apply('+(1)) → L(2,“two1”,4)

222 Op

Objects

Property

Inherits from: Object
Notes

● You may need to put the object in parenthesis to access the method. For example, to access the
“Property” method of an integer, (1).Property("name") works but 1.Property("name") is a
error.

Abstract
Property is a Object that can be used to wrap a object property or class variable. A Property can be
treated like any other object.

Methods
● create(): Return the value of the Property. For example, the following are equivalent:

 list = L(); list.name;
 property = L().Property("name"); property();
 L().property("name");
If the Property wraps a variable, then:
 class C { var x = 123; } px := C.Property("x");
 C.x ≈ px() → 123
Returns: Unknown

● toString(): Returns “Property(instanceName.methodName)” or
“Var(className.variableName)”.
For example:
List.Property("name").toString()→ “Property(List.name)”
 class C { var x; } C.Property("x").toString() → “Var(C.x)”
 class {var x}.Property("x").toString() → “Var(__class#0.x)”
Returns: String

● toBool(): Returns True

Properties
● instance: The instance that this property is bound to. For example,

L().Property("name").instance.name returns “List”.
Returns: Instance

● value: Returns the value of the property or variable.
Returns: Unknown

Discussion
Property exists so you can “package” a property or variable and pass it around. It is a “pointer to value”
that is used to defer dereferencing. It provides method like access to properties and variables. It is
created via the “Property” Object method.

 223

Objects

RegExp

Full name: [TheVault.]RegExp
Inherits from: Object

Abstract
Basic regular expressions.
RegExp is not thread safe.

Remember to double quote “\” in your expression string if you use “” strings. Since this can be
painful, consider using raw strings.

Methods
● create(pattern):

Throws: ValueError
Returns: RegExp

● matches(text,move=False): Check to see if the string matches the regular expression.
Clears matched but does not set it. If move is True, the pattern is walked down the string looking
for a match, similar to prepending “.*”.
Throws: ValueError
Returns: Bool

● pump(text,sink,…): Pump the chunks of text that match the regular expression.
RegExp("79.|3.|7.").pump("139350936979874",List)
 →L("39","35","36","798","74")
The default is to extract the entire match but if a group is used, that is extracted. Note that only
the first group is used.
RegExp("\\$(..)\\$").pump("fooabbarcdsanta",List)
 →L("ab","cd")
To count words in text:
 RegExp("\\w+").pump(text,Dictionary().incV) → Dictionary
Text can be String or Data.
Returns: Something

● search(text,move=False,startAt=0): Search a String or Data for RE matches. Sets matched.
Throws: ValueError
Returns: True if matched

Properties
● matched : A list describing the match. Matched[0] is a list of the offset and length of the entire

match, the next items are group (“()”) matches (strings).
Returns: List(List(offset,len) [,Strings])

● matchedNs : A list describing the match. Matched[0] is a list of the offset and length of the entire
match, the next elements are group (“()”) matches, also offset/length pairs.
Returns: List of integer pairs: List(List(offset,len), ...)

Operators: None

224 RegExp

Objects

Discussion
This object provides a basic regular expression matching/processing for Strings. It is based on the regex
package originally written by Ozan S. Yigit.

Examples:
● Parsing time. If you know that the time is formatted as “hh:mm”, where there can be one or two

of each digit and the time can be anywhere in a string, the following will pluck it out: \D*(\d+):
(\d+) This RE breaks down to: zero or more non digits followed by one or more digits followed
by a colon followed by one or digits. Oh, and save the digits. To put it into a program:
 re:=RegExp("\\D*(\\d+):(\\d+)");
The backslashes have to be doubled up because String converts “\\” to “\”. It is easier to write:
 re:=RegExp(0'|\D*(\d+):(\d+)|);
Now to use it:
 re.matches("12:4") → True
 re.matched → L()
 re.search("12:4") → True
 re.matched → L(L(0,4),"12","4")
 re.search("The time is 1:04AM");
 re.matched → L(L(0,16),"1","04")
 re.matchedNs → L(L(0,16),L(12,1),L(14,2))

Syntax
Close to a subset of PCRE (Perl Compatible Regular Expressions) but don't expect compatibility; be
happy if it happens.

Expression Matches

character A single character. Unless it is one of: . \ [] () * + ^ $

. (dot) Any character

\c Match a character or type of character.

c Matches

\d A digit: Typically [0-9]

\D Not a digit

\s Whitespace, including newlines (“\n”) and carriage returns
(“\r”)

\S Non-whitespace

\t Tab

\w Alphanumeric, including “_”

\< Beginning of word. Word is \w

\> End of a word.

\c The character c. eg “\a” matches “a”, \\ matches “\” (remember
that code for matching a back quote is “\\\\” or 0'”\\”.

 225

Objects

Expression Matches

The “normal” back-quoted characters (tab, newline,
backspace, etc) work as expected; ie \t matches a tab and
doesn't need doubled backslashes.

Expression Matches

[set]
[a-z]
[^set]

Match a character in a set

Set Matches

[abc] Any of the three characters “a”, “b”, or “c”

[a-z] Range of characters between. [0-9A-Fa-f] will match hex
digits.

[a-b-c] Same as [a-c]

[a-a] “a”

[-abc]
[abc-]

“-”, “a”, “b” or “c”

z-a Error

[^set] Any character NOT in the set. The caret has to be the first
character.

[^]-] Any character except “]” and “-”. Also “[^]]” and “[^-]”

[]] “]”. Also “[]a]” matches “]” and “a”

[]-] “-” or “]”. “-” and “]” don't have special meaning if they are
the first characters in the set but “]” has to be the first
character after the “[“ and “-” can be the next or last.

\ “\”. “\” has no special meaning in a set; regular string quoting
will handle the character conversion. For example, “[\n]” will
put a newline in the set, “[\\]” is a single backslash.

* Zero or more matches of any of the above expressions. Greedy.
Note that “x*” will match “” with a match length of 0 characters.

+ As “*”, but one or more. Greedy.

\? As “+” but one or none: “f\\?” matches “foo” and “bar”

() Group: used to hold the results of a match. Numbered 1 to 9

\1 \2 … \9 Match the nth group
For example: (fo.*)[1-3]\1 matches “foo1foo”, “foo2foo”, “foo3foo”
(fo.*)-\1 matches “foo-foo” “fo-fo”, “fob-fob”, “foobar-foobar”, ...

^ Start of string

$ End of string

226 RegExp

Objects

Expression Matches

A|B A or B. If A doesn’t match, try to match B. Use as many as you want.
You will need to use groups to have multiple sets:
.(79.|3.|7.)..(5|6)
This is greedy and doesn’t back track.

 227

Objects

ROList

Full name: [TheVault.]ROList
Inherits from: Object

Abstract
A Read Only List. This is a List that can not be modified, only read. It is thread safe.
ROList is almost entirely a subset of List, with one addition method: build.
T is shorthand for ROList: T(1,2,3) is the same as ROList(1,2,3).

Modified Methods
● copy(): Create a writable copy of self.

Returns: List
● create([objects]): Create a new Read Only List instance.

Returns: ROList
● makeReadOnly(): Does nothing.

Returns: self
● reverse(): Returns a reversed copy of self.

Returns: ROList
● set(offset,newValue):

Returns: ROList
● sort(): Makes a copy of self and sorts it.

Returns: ROList
Deleted Methods

● __sSet, clear, createLong, del, insert, pop, remove, replace, reverse, swap,
write, writeln

Unchanged Methods
● __sGet, append, apply, apply2, calcChunk, callMethod, callProperty, cat,

close, concat, extend, flatten, filter, filter1, filter22, find, flush, holds,
index, len, reduce, run, runNFilter, sum, toBool, toList, toString, walker,
xplode

Modified Properties
● isReadOnly:

Returns True.
● isThreadSafe:

Returns True.
● type:

Returns “ROList”

Modified Operators
● add (+): Returns a new ROList with x appended.

Deleted Operators
● sub (-)

Unchanged Operators
● eq (==), neq (!=)

228 ROList

Objects

Small Dictionary, PolyGraph

Full name: [TheVault.]SD (a create Method)
Full name: [TheVault.]PolyGraph (a create Method)
Inherits from: Object

Abstract
A small dictionary is a immutable Dictionary that has a maximum of 256 string keys.
A polygraph is a small dictionary where all values are True.

Both these objects have the same methods and properties as Dictionary minus the modify methods.

Discussion
Dictionaries can be large lumbering things that are overkill for things like small symbol tables. A small
dictionary is just a key/value store plus be bit of overhead for the index and can't be changed. A
polygraph is even simpler; it is a set of strings (the keys) that you query to see if it holds another string.

d := SD("one",1, "two",2); d["one"] → 1
p := PolyGraph("one","two"); p["one"] → True, p[3] → False

 229

Objects

startup

Inherits from: Class

Abstract
The startup script is loaded by the VM to act as the zkl “shell”. If you want a customized version of zkl,
modify this class110.

Discussion
After the VM has initialized itself, the last thing it does is load this class and pass control to it (by
running the constructor).
The startup described here is the default supplied with zkl, it should be modified if you desire different
functionality.

zkl <zkl file> …
If the command line has parameters and the first parameter isn't an option (ie that parameter doesn't start
with “-” or “--”), it is assumed that a zkl script is being run.

● zkl name.zkl …
The file is compiled and the constructor is run.

● zkl name.zsc …
The file is loaded and its constructor is run.

● zkl path.name …
Import is called with the pathname. This means that things like “Tests.class”, “Test.testThemAll
Tests”, “Misc.fact” work as expected.

zkl [options] …
The options are:

● --#! text: Write a #! line to object file (use with –out or –Out)
"--#! ." will examine the first TWO lines of the source file for a #! line

● --compile (-c) fileName: Compile a file
● --Debug (-D) integer: Set the compiler debug level
● --debug (-d) : Compile debuggable
● --exit : Exit
● --help (-?) : Print command line options
● --I (-I) path: Append to the include path
● --I= path: Set the include path
● --load (-l) fileName.zsc: Load a compiled file
● --out (-o) file or directory: Write compiled file to file or directory. If a directory is specified, the

file name is fileName.zsc.
● --Out (-O) directoryName: Write compiled file to directory/class.vaultPath/fileName.zsc. If the

class you are compiling uses AKA, this is a easy way to have it place itself, directoryName being
the top of the output tree.

● --parse (-P) fileName: Parse a file and print the parse tree.
● --quit : Exit

110Currently, you have to do this with “set zklIgnoreWad=1” or recompiling zkl. An alternative runtime override is to specify
your shell on the command line: zkl myshell

230 startup

Objects

● --resolve name: Find name in class
● --run (-r) : Run the constructor
● --runFcn name: Run a named fcn in class
● --tokenize fileName: Tokenize a file
● --unasm : Unassmemble class
● --version (-v) : Print the zkl version

After the options are parsed, startup sits in a loop, reading input, evaluating it and printing the result.
Control-C will terminate the shell.

The Shell
The shell portion of startup handles user interaction – something is typed at the console prompt, startup
compiles it and prints the result. Variables, named functions and classes are stored so that they can be
referenced later111. If a variable, class or function is created with the same name as an existing object, it
overwrites it.

zkl: 1 + 2
3
zkl: class c { var x = 123 }
zkl: c().x
123
zkl: fcn c { println(“Hello from “,self.fcn) }
zkl: c()
Hello from Fcn(c)

Variables
In order for variables to be stored112, they have to be declared with “var” the first time they are set.
Registers are never stored.

zkl: var x = 123 // create variable and save it
123
zkl: x + 1 // use saved variable
124

Miscellaneous
● Blank input lines are ignored.
● “?” prints a infomercial.
● “exit” is a predefined function that will terminate the shell.
● “help” is a predefined function that also prints the infomercial.
● Constants (const) are never stored; they are transient data.

Continuation Lines
While the compiler doesn't support continuation lines, the shell does. If the line ends with “\”, the
prompt changes and you can continue the line. The first line that doesn't end with “\” signals the end of
the line.

zkl: fcn f{\
zkl: ...> println(“Hello”); \

111It does this with a lame imitation of prototype-based programming. Variables are used for the “slots”, stored data is
collected into a class and inheritance is used to give the command access to the stored data.

112If you don't use the variable outside of the current line, you can ignore this.

 231

Objects

zkl: …> }()
Hello

All Done
You can exit the shell in several ways:

● Control-C (^C) will immediately exit, which is usually the easiest way to exit. The drawback is if
you have open files, they may drop data as they are not given the opportunity to close.

● Control-D (^D) Enter will do a nice controlled exit.
● “exit” and “exit()” will also exit nicely, as long as you haven't overwritten this predefined

function.

Command History and Editing
Command history and line editing is handled by the OS shell. For example, on Windows, the CMD shell
maintains a history stack that can be accessed with the arrow keys. On Unix, the shell attempts to load
the zklEditLine shared library to provide this functionality (unless $zklNoEditLine is set).

Annoyances
Due to the way the shell is implemented, inheriting from classes defined in the shell doesn't work113.
Thus:

zkl: class A {}
zkl: class B(A) {} // "A" is not a class?!?

generates a cryptic error. However, if both classes are defined on the “same” line, or the parent is stored
in the Vault, it works:

zkl: class A {} class B(A) {} // OK
zkl: class A {} \
zkl: …> class B(A) {} // OK, used continuation line
zkl: Vault.add(A,"Tmp"); // Add A to the Vault
zkl: class B(Tmp.A) {} // OK, A is real

113The shell stores classes in variables and you can't inherit from a variable.

232 startup

Objects

String

Full name: [TheVault.]String
Inherits from: Object

Abstract
Character strings114. While a character set is neither implied nor imposed, each character is 8 bits.
Unicode or wide characters are not supported and character zero is unavailable (it is reserved for internal
use).

Strings are immutable, that is, they don’t change. You “change” them by creating new ones (usually
indirectly).

String Constants
“hoho”
“foo” “bar”
Adjacent strings self concatenate: “foo” “bar” → “foobar”. (You may need to enclose the strings
in ()s: ("foo" " %s").fmt(x) → "foo %s".fmt(x)).

Strings can’t span lines:
“foo
bar”

doesn’t work but you could rewrite it as:
“foo\n”
“bar”

Special Characters

\\ “\”

\b Backspace

\e Escape (\x1b)

\f Form feed

\n Newline

\r Carriage return

\t Tab

\xAB Hex: Converts the hex constant AB to a character115.
“\x09” ≈ “\t”, “\x0a” ≈ “\x0A” ≈ “\n”

\uABCD Unicode: Converts a four [hex] digit Unicode character (16 bits) to a
UTF-8 character (two to three bytes). For example: “\u00A2,\u20ac” →
“¢,€” (six characters: two for “¢”, one for “,” and three for “€”)116.

114For the old timers: An null terminated array of unsigned bytes: unsigned char string[]
115Curiously, “a\x00b” ≈ “ab” as the null is ignored.
116If you want to view UTF-8 text with an application such as Internet Explorer, WordPad, OpenOffice Writer, etc, write a

Unicode BOM (Byte Order Mark, U+FEFF) as the first character of the file. For example:
file.write("\ufeff\u00A2,\u20ac") → “BOM¢,€”

 233

Objects

Special Characters

\Uxx...; Multibyte Unicode: takes one to six hex digits and converts them to UTF-
8. The digits must be terminated by a semicolon.
“\Ua2;” → “¢ ”, "\U1F0A1;" → �
Any other character just quotes itself: “\?” → “?”

Raw String Constants
Sometimes, the special characters get in the way (in regular expressions, for example). The string
“AbackslashtBbackslash” can be created with: "A\\tB\\". Which isn't pretty and get down right ugly
when you have to double quote a lot of things. For that, you can use raw strings: 0'Sentinel-
CharacterTextSentinel (zero single-forward-quote sentinel text sentinel). The sentinel character can be
anything except space characters or backslash117. The following are all equivalent to the example string:

0'XA\tB\X 0'"A\tB\" 0'|A\tB\| 0'$A\tB\$ 0':A\tB\:
If you want to mix special character and raw you can use string concatenation:

0'"A\tB is " "A\tB" → “A\tB is A B”

Terms
● “value” refers to the characters in the String.
● “offset”: See Rules for Offset (below)
● “length”: See Rules for Length (below)

Methods
● append(str,str...): Creates a new string, the same as String.create(self,str...).

Returns: new string
● apply(f [,paramters]): Walks each character in value, applying a transform and collecting

the results in a String.
Example: The rot13 function (rotate text by thirteen characters) can be written using apply:
var letters=
 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
var rot13Letters=
 "NOPQRSTUVWXYZABCDEFGHIJKLMnopqrstuvwxyzabcdefghijklm";
fcn rot13(c){ // rotate one character
 try{ rot13Letters[letters.index(c)] }
 catch{ c }
}
"Hello World!".apply(rot13) → “Uryyb Jbeyq!”
See also: pump,translate
Returns: String.

● charAt(offset,length=1): Another name for __sGet.
Throws: IndexError
Returns: String

● close(): Does nothing. For Stream compatibility.
Returns: self

● copy(): Returns self. Since Strings are immutable, self is functionally equivalent to a copy.
Returns: self

117But be reasonable! For example, # works but whoever reads your code could be easily confused into thinking it is the
start of a comment.

234 String

Objects

● counts([string]): Count the number of each character in self and return a list of those counts.
If string, only return the counts for those characters.
Examples:
 "text".counts() → L("e",1, "t",2, "x",1)
 "text".counts("at") → L("a",0, "t",2)
If you want a L(L(c,n), …), use
 "text".counts().pump(List,Void.Read,ROList)
 → L(L("e",1),L("t",2),L("x",1))
If you want to know the letters used the least and most:
 ns,cs := "this is a test".counts().filter22((1).isType);
 (0).minMaxNs(ns).pump(List,cs.get); -→> L("a"," ")
And, since there are several letters that are the “mostest”, this will get them:
 ns,cs := "this is a test".counts().filter22((1).isType);
 a,b := (0).minMax(ns);
 ns.enumerate().pump(List,
 'wrap([(e,n)]){ if(n==b) cs[e] else Void.Skip });
 → L(" ","s","t")
Returns: List

● create(text="" [,object ...]): Create a String with value set to text. If a parameter isn't a
string, its toString method is called. Examples:
 s:="text"; s("foo") → “foo”
 "".create(1,"two",3) → “1two3”
 String("this is ","a test") → “this is a test”
Returns: String

● del(offset,length=1): Delete a substring and return the remainder.
Returns: String

● filter(f): Push characters through a filter.
Returns: String

● find(pattern,offset=0,length=*): Look for a pattern in value. If found, returns the offset of
where the pattern is, otherwise Void is returned.
Offset and length determine the characters in self to search.
Throws:
Returns: Int or Void

● fmt(parameters): Pretty much the same as C’s sprintf. See below for a discussion of the format
string (which is self).
Throws: ValueError, conversion errors
Returns: String

● get(offset,length=1): Another name for __sGet.
Throws: IndexError
Returns: String

● glob(text,flags=1): This is match but with self being the wild card pattern.
Returns: True is there is a match, else False.

● holds(text [,text …]): Returns True if any of the parameters are in value.
Examples:
 "this is a test".holds("this") → True
 "this is a test".holds("foo") → False
 "this is a test".holds("foo","s a") → True
Returns: Bool

● inCommon(text, [,text …]): Returns the characters of text that are in value. For example:

 235

Objects

 "123".inCommon("345") → “3”
 "".inCommon("345") → “”
 "123".inCommon("") → “”
 "1,12".inCommon("12") → “112”
To count the occurrences of a character:
 "1,12,123".inCommon("1").len() → 3
Note: This method is basically (value – (value – text)) or value.filter(text.holds).
Returns: String

● insert(offset,string,...): Concatenate strings and insert them at offset.
Throws: IndexError
Returns: new string

● index(pattern,offset=0,length=*): Same as find but throws IndexError if not found.
Offset and length determine the characters in self to search.
Throws: IndexError
Returns: Int

● isSpace(): Returns True if value consists entirely of white space.
Returns: Bool

● len(): Returns the number of characters in value.
Examaple: "123".len() → 3, "".len() → 0
Returns: Int

● len(8): Returns the number of UTF-8 characters in value.
 u:="\ufeff\u00A2,\u20ac"; // “BOM¢,€”
 u.len() → 9, u.len(8) → 4
Throw: ValueError if value contains an invalid UTF-8 character.
Returns: Int

● matches(wildCardPattern,flags=1): Check to see if value matches a Unix shell like wild
card (glob) expression.

Text Matches
\x Turns off the special meaning of x and matches it directly; this is

used mostly before a question mark or asterisk, and has no
special meaning inside square brackets.
If flags has bit 1 set (ie 0x2), “\” is ignored for all but ? * []
This is for Windows files names.

? Matches any single character.
* Matches any sequence of zero or more characters.
[x...y]
[x-y]
[x-y-]
[-...]
[]]
[]x...y]
[]-]
[]x-]

Matches any single character specified by the set x...y, where any
character other than dash or close bracket may appear in the set.
Exceptions: “]” can be the first character in the set and “-” can be
the last, if you use both. Otherwise, either can be first.
“[“ is not special inside the set, so “[[]” and “[a-z[]” will match
“[“
A dash may be used to indicate a range of characters. That is,
[0-5abc] is shorthand for [012345abc]. More than one range may
appear inside a character set; [0-9a-zA-Z._] matches almost all of
the legal characters for a host name.
[-], [x...y-] and [-a-z] all match “-”. [[-]], []-a-z] are undefined.
[\] matches “\”.

236 String

Objects

Text Matches
[^x...y]
[^]]

This matches any character not in the set x...y, which is
interpreted as described above. ^ is only special as the first
character.

Flags: A bit pattern that changes the match behavior.
Bit Effects

0 (0x1) If 1, case is ignored when matching. Sets are not affected. For
example, "x".matches("X",1) → True but
"x".matches("[X]",1)→ False.

1 (0x2) If 1, the quote character (“\”) is restricted; it will only escape ?, *,
[or]. This is to accommodate Windows use of that character in
file names.

Matches provides a simple alternative to regular expressions (see Objects.Regexp). While it
quickly becomes cumbersome for non trivial patterns, it is especially good for matching file
names.
To check to see if a string is the prefix of another string, use s.matches(prefix+"*").
This method is based on the “wildmat” pattern matching code written by Rich $alz.
Throws: Conversion errors
Returns: True is there is a match, else False.

● prefix(string,...): Returns the number of characters in the prefix of self and strings.
Examples:
 "foo".prefix("foobar") → 3
 "foobar".prefix("foo") → 3
 "foo".prefix("barfoo") → 0
Returns: Int

● pump(sink[,action ...]): Another type of loop, similar to apply but with multiple actions.
See also: Notes on the pump method at the start of this chapter.
Returns: The last calculated value or a string concatenation of those values.

● reduce(function,initialValue=self[0] [,static parameters]])
Iterate over value, applying function to each character. This is equivalent to:
 self.split("").reduce(...) // convert to List
and (with some hand waving about initialValue and static parameters)
To reverse a string: "123".reduce(fcn(s,c){ c + s }) → “321”
To count the occurrences of a character:
 "1,12,123".reduce(fcn(n,c){n + (c=="1")},0) → 3
See also: Notes on the reduce method at the start of this chapter.
Throws: Yes
Returns: Unknown

● replace(searchFor, replaceWith): Replace all occurrences of searchFor with replaceWith.
Value is unchanged.
Example: "this is a test".replace("t","T") → “This is a TesT”
Throws:
Returns: String

● rfind(pattern,start=*): Same as find but in the reverse direction.

 237

Objects

Note: If start is not *, the match may include start. For example:
 "..X..".rfind("..",-2) == "..X..".rfind("..",3) → 3
 "..".rfind("..",0) and "..".rfind("..",1) → 0
Returns: Int or Void

● reverse(): Reverse the characters.
Returns: String

● set(offset,length,text): Replace a chunk of value with text.
Returns: new String

● __sGet: Perform subscript read operations on value.
Zero is the first position in a String.

● __sGet(offset): This is string[offset]. Returns the character in value at offset.
● __sGet(offset,length): This is string[offset,length]. Returns length characters of value,

starting at offset. If there aren't length characters available, returns as many as possible (which
might be none, ie “”).
See below for special values offset and length can have.
Throws: IndexError
Returns: String

● sort(): Sort the string in ascending order, retaining duplicates.
Returns: String

● span(openToken,closeToken,matchOuterMostSpan=True): Span a sequence of characters
that start with openToken and end with closeToken (which can be more than one character but
not the same). The token counts will be the same.
Examples:
 "a(b)c".span("(",")") → L(1,3)
 "/*a/*bc*/d*/".span("/*","*/",True) → L(0,12)
 "/*a/*bc*/d*/".span("/*","*/",False) → L(3,6)
 "a((b)c)".span("(",")",True), "a((b)c)()".span("(",")") → L(1,6)
 "a((b)c)".span("(",")",False) → L(2,3)
 "abc".span("(",")") → L()
 "abc)".span("(",")"), "a((b)(c)".span("(",")") → Void
Returns: L(start of span, length of span), Void (bad count or invalid), L() (not found).

● split([separator=Void,maxSplits=*): Splits value into chunks with the splits occurring at
separator. A list containing the chunks is returned. If there are more splits than maxSplits allows,
the remainder of value is appended to the list. The list will not contain more than maxSplits + 1
chunks.

● split(), split(Void,n): Split value at white space
● split(separator[,n]): Split value at separator.
● split(""[,n]): Split value at each character, with a maximum list length of n.

This is different from the other forms of split in that it doesn't return a remainder, it just explodes
the string into a list.
Examples:
 "1 2 4 5 ".split() → L("1","2","4","5")
 "1 2 4 5 ".split(" ") → L("1","2","","","","4","","5","")
 "1 2 3 4 5".split(Void,2) → L("1","2","3 4 5")
 ".1.2.3..4.5".split(".") → L("","1","2","3","","4","5")
 ".".split(".") → L(“”,””)
 "".split(".") → L(“”)
 "123".split(".") → L(“123”)

238 String

Objects

 "123".split("") → L(“1”,”2”,3”)
Returns: List

● strip(whichSide=0): Remove white space characters.
-1 Strip from left side
0 Both sides
1 From right side

Example: " foo bar ".strip() → “foo bar”
 " foo bar \n".strip(1) → “ foo bar”
Returns: String

● tail(n):
Returns the last n characters of self. If n is larger than length, n is set to length.
Returns: String

● toAsc(): Converts the first character of value to a integer.
For example: "123".toAsc() → 0x31, "".toAsc() → 0
To convert a string: "123".toData().bytes() → L(49,50,51)
Returns: Int

● toBool(): Returns True if value isn’t empty, otherwise, False.
Returns: Bool

● toData([mode=Int]):
Returns: Data

● toFloat(): Converts value to a floating point number and returns it.
See Objects.Float for format specification.
Throws:
Returns: Float

● toInt(B=10): Convert value from base B (where B is in [2,36]) to a integer.
Examples:
 "123".toInt() → 123
 "ab".toInt(16) → 171
 "101".toInt(2) → 5
 "a".toInt() → ValueError
 "".toInt() → ValueError

“” can be a pain, since you might like it to convert to zero. Here is a work around:
(digits or 0).toInt() If there are no digits to be had, 0 is substituted (or the default
value of your choice) and that is converted to an Int. Another example:(digits[a,b] or
123).toInt()

Throws: ValueError if a character isn't valid or string is “”
Returns: Int

● toLower(): Return a lower case version of self. Only letters in “A-Z” are converted.
Returns: String

● toString(): Returns self.
Returns: String

● toUpper(): Return a upper case version of self. Only letters in “a-z” are converted.
Returns: String

● translate(srcTable,dstTable): Translate characters in srcTable to the corresponding
characters in dstTable. That is, if self is “a” and srcTable is “a” and dstTable is “b”, the result is
“b”. This is a character by character translation of self through the tables.
Example: The rot13 function (rotate text by thirteen characters) can be written using translate:

 239

Objects

cs:=["a".."z"].pump(String); // "abcd…z"
srcTable:=String(cs,cs.toUpper()); // "ab…zAB…Z"
dstTable:=String(cs[13,*],cs[0,13]);
dstTable =String(dstTable,dstTable.toUpper());
a,b:="Hello World!",a.translate(srcTable,dstTable);
println("\"%s\"-->\"%s\"-->\"%s\""
 .fmt(a,b,b.translate(srcTable,dstTable)));
"Hello World!"-->"Uryyb Jbeyq!"-->"Hello World!"
Returns: String

● unique(): Remove redundant characters from value and return what's left. The resulting set
remains ordered.
Returns: String

● walker([n=3]): Returns a Walker that iterates over value. Normally, this is called by foreach
but you can call it too. N has the same semantics as Data.

n walker.next() returns
0 Int (one byte of value)
1 String, one line at a time
2 String, value
3 String, one character at a time using __sGet.

Examples:
"123".walker().walk() → L(“1”,“2”,“3”)
"123".walker(0).walk() → L(49,50,51)
"123\nabc".walker(1).walk() → L(“123\n”,“abc”)
"123\nabc".walker(2).walk() → L(“123\nabc”)
"123".walker(3).walk() → L(“1”,“2”,“3”)
Returns: Walker
See also: Objects.Walker, Keywords.foreach

● zip(objects): Creates a new list of strings: Each sublist consists of one item from each of the
source strings.
 135".zip("24678") → L("12","34","56")
Returns: List of strings

● zipWith(f,objects):
 "135".zipWith('*,T(2,4,6,7,8)) → L("11","3333","555555")
Returns: List of strings

Properties:
● text: returns self

Operators
For most binary ops (eg +, <), the second operand is converted to a string (if it isn’t already one), the
operation is performed and a string result returned.
Examples:
 "1" + "2" → “12”
 "1" + 2 → “12”
 "1" + True → “1True” because True.toString() → “True”
 "1" + Void → “1Void”
 "1" < "2" ≈ "1" < 2 → True
 "12" < "2" ≈ "12" < 2 → True

240 String

Objects

The OPs
● eq (==): If the other operand isn't a String, returns False. Otherwise, returns True if the two

strings hold identical characters (and the same number of them in the same order).
Result: Bool

● neq (!=): If the other operand isn't a String, returns True. Otherwise, returns not eq.
Result: Bool

● lt (<): Returns True if value is lexically less than the second string.
Result: Bool

● lte (<=): Returns True if value is lexically less than, or equal to, the second string.
Result: Bool

● gt (>): Returns True if value is lexically greater than the second string.
Result: Bool

● gte (>=): Returns True if value is lexically greater than, or equal to, the second string.
Result: Bool

● add (+): Create a new string by concatenating the second string to value and returning the result.
Result: String

● sub (-): Create a new string by removing all occurrences of the characters in the second string
from value.
Examples:
"1232" – "2" ≈ "1232" – 2 → “13”
"This is a test" – "te" → “This is a s”
Remove all whitespace: string - " \t"
Result: String

● mul (*): The second operand is a integer. Concatenates n copies of value and returns it.
Example: "abc" * 3 → “abcabcabc”
Result: String

Discussion
Often118, you'll want (or need) to treat a string as a list of characters (as C programmers do). When the
string methods just don't work, you might have to deal the string on a character by character basis. You
can do this with string[n], foreach, reduce, or by exploding the string into a list. As an example, how
would you find all the unique characters in a string (or, put another way, remove all the redundant
characters from a string)? One way would be to look a character, and if it hasn't been seen yet, put it into
another pile. When you have examined all the characters in the string, the pile contains the unique
characters. Here are three ways of doing that:
 reg s="This is a test";
 reg result=""; // #1
 foreach c in (s){ i(not result.holds(c)) result+=c }
 result= // #2

s.reduce(fcn(r,c){ if(not r.holds(c)) r+=c; r });
 result=s.split("") // #3

 .reduce(fcn(r,c){ if(not r.holds(c)) r+=c; r },"");
 → “This ate”
Pick your your favorite style. Both are side effect free (outside of the function they are used in), #1 will
appeal to the imperative crowd and the functional people will like the second and third. #2 and #3 are
completely side effect free. #3 also shows how easy it is for a string to morph into a list.

118Especially if you are an old timer who thinks of a string as a byte stream

 241

Objects

You might be asking yourself “who cares about side effects anyway”? Nobody, until they have to use
threads. There is more discussion about this in Class.threading.

Rules for Offset (in order):
● The first element is zero: [0].
● The last element is [-1] or [length – 1].
● If offset is < 0, it is added to the length.
● If offset < 0 or offset ≥ length, IndexError is thrown.

Rules for [Offset,Length] (in order):
● If the string is empty, the result is “”.
● The Offset rules are applied, but, instead of an error, “” is returned.
● The default for length is 1.
● “*” is short hand for the number of elements. [0,*] is the entire list.
● If length is < 0, it is reset to (value.len() – offset + length). If still < 0, “” is the result. Thus [0,-n]

is everything but the last n characters.
● If offset + length is greater than the number of available characters, length is truncated to what is

available. Thus “123”[2,100] yields “3”.

Formatting

Strings support formatting very similar to that of C's printf and sprintf. The “fmt” method takes
parameters that are then formatted according to the codes in value.
Examples:

● "%s %s %s".fmt(self,self.fcn,123) →
“Class(RootClass#) Fcn(__constructor) 123”

● "%02d:%02d:%02d".fmt(2,3,4) → “02:03:04”

Format: [text][%[<flags>]<tag>][text]
● %% → %
● %<non-tag>: unchanged. For example, “%*” → “%*”
● flags: [+- 0,][W][.P]
● tags: bBcdfeEgGsx
● For each tag, there needs to be a corresponding parameter.

Flag Action

+ For numbers, always prefix a “+” or “-“ (%d, %f, %e, %g)
Ignored by strings (%s, %c).

space If the number is non-negative (not “” for %s), prefix a blank.
Ignored by %c.

- Left justify in the field

0 Pad the field with leading zeros.

, Use commas every three digits for %d, %f: "%,d".fmt(1234) → “1,234”
For %x, bytes are separated by “|”: "%,x".fmt(0x1234) → “12|34”
Binary: Nibbles: "%,.2B".fmt(0x1234) → “1|0010|0011|0100”

242 String

Objects

Flag Action

W Minimum field width. The tag can overflow this field without being truncated
(however, see Precision below).
Right justified and blank padded unless overridden by “0” or “-“.
For floating point, width includes dot and fractional part. In other words, if
you want three digits dot two digits, W is 6 (“%6.2f”)

P Precision (width)

Tag Action performed on the corresponding parameter

Base conversion
(%B)

Specifies the base used for conversion (eg 2 is binary, 8 is
octal). The base range is 2 to 36.

Float
(%e %E %f)

The number of digits after the decimal point.

Float (%g %G) The number of significant digits.

Integer
(%d %b %x)
character (%c)

Ignored.

String (%s) Defines the maximum number of characters that will be
used.

 If the string length is less than P, no padding is done
(unless width is used). Use W = P for fixed field size.

 If W < P, W is expanded to P.

Tag Action performed on the corresponding tag parameter (v):

B Convert v to an integer of the base specified by the precision (2 to 36).
Binary: "%.2B": 5 → “101”, 3.4 → “11”, “7” → “111”5
Octal: "%.8B": 8 → “10”
Hex: Use %x (although “%.16B” works just as well).
If the base isn't specified (“%B”), the base is undefined.

b Convert to Boolean
"%b,%b,%b,%b".fmt(3,L(),L(1),Void) → “True,False,True,False”

c Character

e
E

“Scientific”: [±]m.fffE±nnn, where the number of f’s is specified by the
precision.
A precision of zero suppresses the fractional part and decimal point.
The default precision is six.

d Decimal

f Floating point: [±]mmm.fff, where the f count is specified by the precision.
A precision of zero suppresses the fractional part and decimal point.
The default precision is six.

g
G

“Best” floating point representation. Uses %e or %f.
The decimal point and any trailing zeros are suppressed.

I Ignore this parameter. "%d%I%d".fmt(1,2,3) → “13”

 243

Objects

Tag Action performed on the corresponding tag parameter (v):

s String: Call method v.toString and use that.

x Hexadecimal (unsigned). "%x".fmt(-1) → “ffffffffffffffff”

Notes:
● The significant digits of a number are never truncated (those digits left of the decimal point). A

field will expand to hold them all. The fractional part of a floating point number may be
truncated.

● Strings may be truncated (by the field precision).
● If you combine flags “+” and “ ”, you’ll get one of the actions but which one is undefined. Eg “%

+ d”.fmt(1) could generate “+1” or “ 1”.
● If the flags or tags are incomplete or malformed, the result is undefined.

244 String

Objects

System

Full name: [TheVault.]System
Inherits from: Object

Abstract
The System object provides access to the operating system.

Methods
● chdir(directory): Change directories.

Throws: IOError
Returns: The previous directory

● cmd(cmd): Tells the OS shell to run a command. The exit code is returned. There is no provision
to capture the output of the command.
For example: System.cmd("ls");
See also: popen
Returns: Int

● exit(): Stop zkl and exit to the OS. The default exit code is 0.
● exit(n): Do the above and set the exit code to n.
● exit(msg): Halt the VM, display a message and exit with exit code 2.

On Unix, if the environment variable zklDumpCore is defined to 1, a core dump is produced. For
example:
 ulimit -c unlimited # allow a core file to be saved
 zklDumpCore=1 zkl # set $zklDumpCore and run zkl
 zkl: System.exit("goodbye world")
 goodbye world
 Aborted (core dumped) # file core is now exists (and it is big)
See the Makefile for how to look at the core file with gdb.
Returns: Doesn't

● getenv(name,default=Void): Look up name in the environment variables, and, if it is there,
return it. Otherwise, return the default.

● getenv(): Returns all of the environment variables as a Dictionary of keys and values.
Throws:
Returns: String, Dictionary or Void

● loadFile(fileName,runConstructor=True): Attempt to load a ZSC or wad file.
System.classPath is searched for fileName. If the file is a ZSC (.zsc), it is not added to the Vault
but, if it is a wad, the classes in the wad are added to the Vault. Also, the case of a wad, it is
undefined which class is returned.
If runConstructor is True or List, the Class constructor is run, otherwise, it isn't. If
runConstructor is a list, the constructor is run with the list as the parameter list. This second case
is for scripts (where the constructor is the script). One reason you might not want to run a
constructor is if the file is a script and you don't want to run the script, just load it. Or the
constructor might throw LoaderError, which could confuse your error handler.
Wads
● Constructors are run in the same order as the classes were added to the wad.

 245

Objects

● The wad builder decides which constructors will be run and which classes will get
parameters.

● Every class in the wad that has its “run constructor with parameters” flag set gets the same
parameters (from runConstructor), which the class is free to ignore.

● All classes are added to the Vault before any constructors are run119.
● Put your “main” as the last file in the wad, then, when its constructor is run, all of the objects

will have been constructed120.
● Wad can contain Wads.

Unix: If there is a backslash in fileName, case folding and globbing is done.
See Also: Keywords.pimport, Utils.Wad
Throws: LoaderError, NotFoundError, whatever the constructor throws
Returns: Class

● loadFile2(fileName, searchTheVault=False, vaultPath=False,
 runConstructor=True)
This is loadFile with 2 many options.
Parameter Action

fileName As in loadFile. System.classPath is searched.

searchTheVault If String, TheVault.find(string) is called, and, if found, that
Object is returned.
Else the Vault is ignored.

vaultPath If String, the loaded Class will be stored in the Vault as:
path.<Class.name>

If True, the class is stored in as:
<Class.vaultPath>.<Class.name>

If False, the class is not added to the Vault.
If the file is a wad, this is ignored and the wad contents are
added to the Vault.

runConstructor As in loadFile
Throws: LoaderError, NotFoundError, whatever the constructor throws
Returns: Class

● loadLibrary(fileName): Load a shared library that contains a native Object. System.libPath is
searched for the library.
Throws: LoaderError, NotFoundError
Returns: The result of running the library constructor. A library constructor is different from a
Class constructor so the result won't be a Class but is usually the Object the library implants.
Refer to the library documentation to make sure.

● popen(cmd,mode): Tells the OS to fork a shell and run a command. The mode determines
whether you can read (“r”) from or write to (“w”) the cmd.
For example:
 p:=System.popen("ls","r"); p.read().text.println();
 p.close();
See also: cmd

119This is so wad classes that import other wad classes won't hit the file system.
120This will avoid “unresolved externals”.

246 System

Objects

Throws: IOError
Returns: File

● toBool(): Returns True.

Properties
● argv : Returns the command line parameters.

For example: L("C:\zkl\VM\Release\zkl.exe","-c","Src\walker.zkl")
Returns: ROList

● classPath: This is getenv("zklClassPath") or a default value (see Environment Variables)
converted to a list.
This is a normal list so it can be augmented if need be.
For example: L("C:/zkl","C:/zkl/Src","C:/zkl/Built")
Returns: List

● cwd: Returns the current working directory.
Throws: IOError
Returns: String

● hostname: Returns the host name.
Returns: String

● includePath: This is getenv("zklIncludePath") or a default value (see Environment
Variables) converted to a list.
This is a normal list so it can be augmented if need be.
For example: L("C:/zkl/Include")
Returns: List

● isUnix: Returns True if the OS is a Unix variant (such as Linux).
Returns: Bool

● isWindows: Returns True if the OS is a Windows variant (such as Windows XP).
Returns: Bool

● libPath: This is getenv("zklLibPath") or a default value (see Environment Variables)
converted to a list.
This is a normal list so it can be augmented if need be.
For example: L("C:/zkl/Lib")
Returns: List

● OS: Returns the name of the operating system.
For example: “Windows” or “Unix”
Returns: String

Operators: None

Discussion
A ZSC is a ZKL Serialized Class, which is a Class that has been serialized to a byte stream (like a File or
Data). Asm.writeRootClass is used to do this. Another way to think of them: they are basically the same
thing as a compiled class written to a byte stream (file). The extension for a ZSC file is “.zsc”.

A wad is a collection of ZSCs. Wads are typically built with Utils.Wad

Shared libraries are used to add Objects to the zkl system without having to recompile zkl itself. On
windows, the extension is “.dll”. On Unix/Linux/FreeBSD, “.so” or “.so.n”.

 247

Objects

Import is usually used to wrap the loader methods and hide the ugly details.

248 System

Objects

Test

The Test Classes
The Test classes are for automated/regression testing

Experience is the name everyone gives to their mistakes.
-- Oscar Wilde

Testing is important. Not anybodies idea of fun and nobody wants to do it but it is still important. The
test classes are part of the system so you'll have one less excuse to avoid this chore. It is hoped that they
provide a testing framework that has minimal impact on your productivity while giving you some CYA
as you make future changes. It goes without saying (but I'll do it anyway) that “one off” scripts don't
need a test suite but than again, everybody is probably using “throw away” code written long ago.

Test.testThemAll

Full name: [TheVault.]Test.testThemAll
Inherits from: Class

I've written some perfectly wonderful code. But this isn't it.
-- Groucho Marx, muttered during a 3am bug hunt

Abstract
A script for running Unit Tests in Parallel

This class is actually a “script”, that is, a class that is meant to be run from the command line as a
standalone program. It is used to run collections of unit tests. Unit tests are typically collected into files
and one or more of those make up a test suite. TestThemAll allows you to test the entire suite as easily
as testing a single file of unit tests.

From the zkl shell:
 zkl: Test.testThemAll // test the current directory
 zkl: Test.testThemAll directory
 zkl: Test.testThemAll directories
 zkl: Test.testThemAll – file(s)
 zkl: Test.testThemAll directories -- files

You can also call testThemAll within a program:
 Test.testThemAll(".");
 Test.testThemAll(); // same as above
 Test.testThemAll(directory);
 Test.testThemAll("--","file");
 Test.testThemAll("-n10","--","test*.zkl");
 Test.testThemAll("-n10 -- test*.zkl".split().xplode());

The tests can be interrupted by pressing the escape (ESC) key; when the current group of tests is
finished, testing stops and stats are printed.

 249

Objects

Discussion
If you have a directory filled with files that contain unit tests, you can use testThemAll to run all those
tests in parallel. For example:
 >ls Tests
 const.zkl fence.zkl number.zkl var.zkl
 dataref.zkl iso8601.zkl Object/ vault.zkl
 date.zkl logical.zkl thread.zkl xnotUsed.zkl
All these files are unit testers (see Test.UnitTester, especially “returnClass(tester)”. The directory
“Object” and file xnotUsed.zkl are not tests and will be ignored (any files that start with x or X and
directories are ignored).

TestThemAll takes all of the test files and gives each one to a thread that then runs the tests in that file.
This can save time over running each set of tests sequentially (depending on the number of cores and
how much time a test spends navel gazing). Each test file returns a UnitTester121, these are collected and,
after all the tests have been run, the results for all tests are printed.

Options

The options are the same if run from the command line or called:
● directory: "/[^Xx]*.zkl" is appended and the result is run through File.glob.

In example above, “.” → “./[^Xx]*.zkl" → const.h … vault.zkl
● “--”: All names after this option are considered file names (not directory names). They are

expanded with File.glob. In the example above:
-- const.zkl fence v* → const.zkl, fence.zkl, var.zkl, vault.zkl
(source files are searched if there is no extension)

● --cho minutes-to-run-tests : Repeatedly run all of the tests, until time has elapsed; the tests are
run as a group, the time is checked after each group has run so there may be some over shoot of
the time.

● --forever: Run the tests until ESC is pressed.
● --log : Log the test results to “testThemAll.log”
● --logTo file : Write the test results to file.
● -n N : Run all the tests N times. “--n” works the same.
● -R: Recurses in the directories. “--R” works the same.

If called within a program, each option needs to be a separate parameter:
 zkl Test.testThemAll tests -- foo/bar ≈
 Test.testThemAll("tests","--","foo/bar")

Here is an example of a test run:
 C:\zkl>zkl Test.testThemAll -R Tests

…
===================== Unit Test 90 =====================
Syntax error: A name can't start with a number: 123
Close to
<text>:Line 1:var R;R=123.toInt();
Test 90 passed!

121or else!

250 Test.testThemAll

Objects

===================== Unit Test 91 =====================
Test 70 passed!
===================== Unit Test 71 =====================
Test 91 passed!
===================== Unit Test 92 =====================
Test 71 passed!
===================== Unit Test 72 =====================
Test 16 passed!
…

Notice that the sequence numbers are out of order, showing that the tests are actually running in
parallel.

At the end of the run, stats are printed out:
…
Tests/Object/class.zkl
443 tests completed.
Passed test(s): 443 (of 443)

Tests/Object/list.zkl
356 tests completed.
Passed test(s): 356 (of 356)

Tests/Object/data.zkl
436 tests completed.
Passed test(s): 436 (of 436)

Executive summary: 1 pass in 00:00:23
 4,414 tests completed (42 files)
 Passed test(s): 4,414 (of 4,414)
 Failed test(s): 0
 Flawed test(s): 0
 Failed files(s): 0

Avoid cloudy code, it will just rain bugs.
-- Zander Kale, Zen programmer

 251

Objects

Test.UnitTester

Full name: [TheVault.]Test.UnitTester
Inherits from: Class

I really do not know that anything has ever been more exciting than diagramming test cases.
-- Gertrude Stein, programmer

Abstract
The UnitTester class provides a framework for running small, targeted tests. The tests can be in the
form of source code or compiled code.

Contained classes: UnitTester
The UnitTester class contains a single class of interest: UnitTester. The base class init function returns an
instance of UnitTester.UnitTester. Pass in the name of the test source (usually the name of a file).
Thus, the following are all equivalent:

● TheVault.Test.UnitTester.UnitTester(__FILE__)
● TheVault.Test.UnitTester(__FILE__))
● Test.UnitTester(__FILE__)) // UnitTester is part of the core
● Import("Test.UnitTester")(__FILE__))

Class Variables (UnitTester.UnitTester)
● numnFailed: The number of tests that failed. A failed test is one that didn’t provide the expected

result.
● failedList: A list of all the tests that failed in this run. For example: L(3,6,12).
● numFlawed: The number of tests that are flawed. A flawed test is one that doesn’t have a “R”

class variable.
● flawedList: The list of flawed tests. For example: L()
● N: The number of tests.
● numPassed: The number of tests that passed.
● payload: A list of tests with problems. For example: L(5,”Result and expected result are

different: c d”).

Functions
● stats(out=Console): Prints the stats for this test run.
● testRun(f,expectedException,expectedResult,atLine=Void): Run some compiled code

and examine the results. F is called with no parameters (f()) and the result is compared to
expectedResult. If f throws an exception, that exceptions name is compared to
expectedException. A failure occurs if the result is not the expected result or an unexpected
exception was thrown or the wrong exception was thrown. If expectedException is Void, no
exception is expected.
The test is run in the environment of the test file, ie as if it was a normal function of that file.

● testSrc(srcCode,expectedCompileException=Void,
expectedRunException=Void,expectedResult=Void,atLine=Void): Compile and run a test.

252 Test.UnitTester

Objects

The source code is a string that contains code that will be compiled and run in a isolated
“sandbox” – the code will not be able to access the class variables and other resources contained
in the test file.
The exceptions can be Void, a string (the name of expected exception) or a list of exception
names.

● The test code must have a class variable named “R”, which is used by the UnitTester to
compare to the expected result. If the test code throws an exception, R is not needed.

● If an exception is thrown during compilation, that exception is compared to
expectedCompileException and a failure is logged if it is not the same, or was/wasn’t
expected. ExpectedCompileException equal to Void means that no compiler exceptions
are expected.
Examples:

● Passes because of invalid code:
testSrc("print","SyntaxError");

● Fails because code compiles:
testSrc("print(5);","SyntaxError");

● If an exception is thrown when the code is run, that exception is likewise compared to
expectedRunException.
Examples:

● Passes because runtime error was expected:
testSrc("var R; R.bar;",Void,"NotFoundError");

● Fails, unexpected TypeError was thrown:
testSrc("var R; R.bar=1;",Void,Void,1);

● An example of a test that runs to completion:
testSrc("var R=\"hoho\";",Void,Void,"hoho");

● A flawed test:
testSrc("1+2",Void,Void,3); // no var R

If atLine isn't Void, it is the line number of the test. This makes is easier to locate a failed test:
 tester.testSrc("var R; x",Void,Void,123,__LINE__);

Didn't expect an exception but got: SyntaxError : Can't find "x" (in x)
 Close to
<text>:Line 1:var R; x
Test 77 failed. I hate it when that happens (line 155).

Discussion
This class has nothing in common with other unit testers (such as Java's JUnit).

Small, simple tests are quick and easy to write. When you find an error in your code, it is often easy to
write a test case that exposes the error. These tests can be collected into a bunch tests that can be used to
repeatedly run “regression” tests. Iteratively developing such a test suite takes much of the drudgery out
of testing, and, once you fix a bug, you can be assured that if it attempts to resurrect itself and bite you,
you’ll find it when it does. The UnitTester class provides a class to easily manage a collection of these
tests. It can verify that the code compiles as well as runs and gives the expected results. While it is
targeted at short snippets of source code, it can also run large chunks of code and examine the results.

At the end of your test file, return the tester so that Test.testThemAll can use this group of tests as part of
a greater suite of tests.

 253

Objects

In my opinion, an “ideal” unit test is less than one line of code. But, sometimes, a test just isn't that easy
and can be down right ugly. Such are the “joys” of testing. In such cases, it is usually easier to use
testRun.

Example
tester:=TheVault.Test.UnitTester(__FILE__);

tester.testSrc("var R=1+2;",Void,Void,3,__LINE__);
tester.testSrc("var R=5;",Void,Void,3,__LINE__);

fcn test{ return(123); }
tester.testRun(test,Void,123,__LINE__);

tester.stats();
returnClass(tester); // ← DO THIS! (see Test.testThemAll)

>zkl test.zkl
======== Unit Test 1 =====test.zkl==3========
Test 1 passed!
======== Unit Test 2 =====test.zkl==4========
Result and expected result are different: 5 3
Test 2 failed. I hate it when that happens (line 4).
======== Unit Test 3 =====test.zkl==7========
Test 3 passed!
3 tests completed.
Passed test(s): 2 (of 3)
Failed test(s): 1, tests L(2)

I write great code. Sometimes.
-- Zander Kale, muttered during a [different] 3am bug hunt

254 Test.UnitTester

Objects

Thread

The Thread Support Classes
Full name: [TheVault.]Thread
See Also: Objects.Atomic, Keywords.critical

Abstract
Thread is a collection of Objects and Classes that support threading.
The Atomic object has the “lower” level thread objects (locks, etc), these classes build on those to
provide higher level “utility” objects.

Contained Objects and Classes:
HeartBeat Do something repeatedly.

Pipe Communicate between multiple threads.

Semaphore Control access to a resource.

Straw A one element Pipe.

StrawBoss Recruit a bunch of threads to work on a problem.

Timer Run something after a set amount of time.

Thread.DrainPipe

Full name: [TheVault.]Thread.DrainPipe
Inherits from: Stream
See Also: Objects.File.DevNull

Abstract
A helper class. Use this if you want a “do nothing” Pipe

Discussion
If you call something that needs a Pipe but don't want to create one, use this.

Thread.Heartbeat

Full name: [TheVault.]Thread.Heartbeat
Inherits from: Thread.Timer
See Also: Thread.Timer

Abstract
A repeating timer, a pulse train.

Class variables
● funcToRun: The function that will be run.
● interval: The number of seconds between ticks.

 255

Objects

● nthTick: The current tick count.

Functions
● cancel(): Call this if, having started a timer, you want to stop the train.
● go(): Start the timer.
● init(funcToRun,intervalInSeconds):
● init(funcToRun,intervalInSeconds,count):

Get ready to run a function every tick. FuncToRun is anything that is runnable, such as Fcns,
Methods, etc. If count is present, it is the number of times to run the function.

Discussion
A heartbeat timer is a timer that ticks at regular intervals. At each tick, it runs a function. Applications
could include moving the hands of a clock every seconds (although thread latency might make this too
variable), blinking a LED, updating a displayed image, checking the status of hardware, etc.

The function is passed the Heartbeat in case it wants to query or change something.
The called function can dynamically modify the interval and the next function called but might be more
pain that it is worth, consider just copying and modifying the code (it is only 20 lines).

Examples
● Print “Thump” once per second for ten seconds, starting one second from now:

Thread.HeartBeat(fcn{ println("Thump") },1,10).go();
● Do the same thing but let the called function decide when to stop:

fcn thumper(heartBeat){
 println("Thump");
 if (heartBeat.nthTick==10){
 heartBeat.cancel();
 println("OK, enough banging, stop");
 }
}
Thread.HeartBeat(thumper,1).go();

Warning
Time is a pretty casual concept so don't expect any kind of accuracy.

Thread.List

Full name: [TheVault.]Thread.List
Inherits from: Object

Abstract
A thread safe List. This is the same as Object.List with the addition of thread safe [write] locks on all
operations. Use one of these if more one or more threads can access the list.

Modified Properties
● isReadOnly:

256 Thread.List

Objects

Returns True
● isThreadSafe:

Returns True
● type:

Returns “TSList”

Thread.Pipe

Full name: [TheVault.]Thread.Pipe
Inherits from: Stream, Object

Abstract
A pipe is a object stream between two threads. Pipes are unidirectional and may be of fixed length.

Pipes are object streams (as opposed to bytes streams like files): data exits in the same form as it entered
the pipe.

These pipes are not related to Unix pipes, other than conceptually.

Pipes are multi-producer and multi-consumer; any number of threads can write to a pipe and any number
can read from a pipe.

Methods
● breakIt(exception=Void): Break the pipe and shut it down. The pipe is closed. The data that

is in the pipe remains in the pipe but can't be read. The pipe can't be written to. If you need the
data that is in the pipe, use open().
If you want others to to be able to discern why the pipe was broken, you can add an exception.
This exception will be thrown by read or write if either attempts to access a broken pipe.
Breakit is mechanism for producers or consumers to signal other users of the pipe that something
bad has happened; it need not have anything to do with the integrity of pipe itself. It is roughly
equivalent to pipe.throw(exception), if such a thing existed.
Returns: self

● clear(): Closes and removes all data from the pipe. Due to the nature of threads, if somebody is
writing to the pipe at the same time, the new data may or may not be erased.
Returns: self

● close(): Close the pipe and rebuff all further attempts to write data. Existing data remains in the
pipe, you can continue to read (until the pipe is empty) .
Returns: self

● create(): Create a new Pipe.
Returns: Pipe

● filter(f): Filter the contents of the Pipe.
Returns: List

● flush(): Attempts to optimize the Pipe. Not particularly useful.
Returns: self

● len(): Returns the number of objects in the pipe, which might be changing as you are asking
this question.

 257

Objects

Returns: Int
● open(): Reopens the pipe if it has been closed or broken. Any data that was in the pipe (if and

when it was closed or broken) is still there. Use clear if you need to.
The break exception is set to Void.
Opening an already open pipe does nothing.
Returns: self

● pump(sink[,action ...]): Another type of loop, similar to apply but with multiple actions.
The calls are r=a1(read()); r=a2(r); r=a3(r) …
To read five items from pipe p into a list:
 (0).pump(5,List,p.read.fp(True)) // force timeout to True, not n
To read from a Pipe into a Data:
 pipe.pump(Data(0,String))
See also: Notes on the pump method at the start of this chapter.
Returns: The last calculated value or a list of those values.

● read(timeout=True): Read one object from the pipe.
● With no timeout, read returns the first item in the pipe or waits (blocks) until something is

written to the pipe or the pipe is closed or broken.
● Timeout. If no data is available in that number of seconds, a PipeError is thrown.
● If the pipe was broken with an exception, that exception is thrown; otherwise, a PipeError

is thrown.
● If the pipe is closed, TheEnd is thrown.

Throws: PipeError, TheEnd, other
Returns: Object

● readln(timeout=True): Same as read.
● reduce(f,initialValue=self.read() [,parameters]): A feedback loop which runs f until

the pipe is closed. The calls are:
 p:=initialValue;
 p=f(p,self.read(),parameters);
 p=f(p,self.read(),parameters);
 …
To stop the loop, return(Void.Stop) or return(Void.Stop,result).
Returns: p

● toBool(): Returns True if there is data in the pipe.
To check collection of pipes for available data:
 pipes=L(pipe1,pipe2,…); p=pipes.filter("toBool");
Returns: Bool

● wait(timeout=True,waitForClosed=False,throw=False): Wait for activity.
● If waitForClosed is True, wait will block until the pipe is closed (or times out).
● If wait times out, False is returned.
● If the pipe has closed, True is returned. There might be data in the pipe.
● If the pipe has data, and waitForClosed is False, 1 is returned. There might not be data in

the pipe, if there are multiple readers.
One use of wait to check for activity on a collection of pipes.
 pipes=L(pipe1,pipe2,…); p:=pipes.filter("wait",0);
p is a list of pipes that have data or have closed. To poll until activity:
 while(not (p:=pipes.filter("wait",0)))
 {Atomic.sleep(0.05)}
If you want to wait for the pipe to become empty, use

258 Thread.Pipe

Objects

 Atomic.waitFor(pipe.Property("isEmpty"))
See also: Objects.Atomic.wait
Throws: Timeout (if throw is True)
Returns: False (timeout), True (closed), 1 (data).

● walker(): Returns a walker so you can read the pipe from within a foreach loop.
Returns: Walker

● write(x,timeout=True): Write an object to a pipe.
● Any object can be written.
● If the pipe is broken, an exception is thrown. If the pipe was broken with an exception,

that exception is thrown; otherwise, a PipeError is thrown.
● If the pipe is closed, TheEnd is thrown.
● If the pipe is full122, write will block (but not longer than timeout) until there is room.

Throws: PipeError, TheEnd, other
Returns: Bool

● writeln(x,timeout=True): Same as write.
Returns: x

Properties
● hasData: Returns True if the pipe can be read without blocking. Might be a lie if there are

multiple readers.
Returns: Bool

● isBroken: Returns True if the pipe has been broken.
Returns: Bool

● isClosed: Returns True if the pipe has been closed. Note that since breaking a pipe also closes
it, isClosed will also return True if the pipe has been broken.
Returns: Bool

● isEmpty: Returns True if the pipe is empty at the moment. Due to the nature of threads,
something might be entering the pipe as you are asking this question; in which case, as soon as
empty returns True, it is actually False.
Returns: Bool

● isOpen:
Returns: Bool, (not isClosed)

● whyBroken: Returns the exception that was passed to breakIt.
Returns: Class or Void

Discussion
Pipes are a commonly used thread object; they make it easy to connect one (or more) thread(s) to other
thread(s). Pipes can be used in non-threaded applications but it doesn't make a lot of sense to add all the
overhead where a simple list would suffice.

Pipes are created open.
Data flows into a pipe and stays there until it is read or cleared.

If a Pipe is blocked, it can be interrupted by an Exception thrown at the blocked thread.

122Whatever that means – implementation dependent.

 259

Objects

Timeouts
The timeouts are considered to be hints and are intended to avoid infinite waiting. About the only
guarantee is that the method won't give up before the time out has expired (ie, it will wait at least that
long). Successful reads and writes can take longer than the time out, depending on contention.
Timeout Value Blocks

None Yes

True or Void Yes

False or <= 0 No; the operation succeeds immediately or fails

N (Int or Float) Not more than N seconds

Multi-Producer, Multi-Consumer
Multiple producers (threads) can write data to pipes, and multiple consumers can suck data out of a pipe.
Multiples of either are unusual, but when you need it, you really need it.

Object Stream are Typeless
Pipes are object streams, that is, data flows out of the pipe in the same format and size that it enters the
pipe. If a number goes into the pipe, followed by a list, that number flows out, followed by the list. A
really twisted example would be to write a pipe into a pipe, you could even write a pipe into itself (a
Klein pipe?) but please don't! (a different pipe is OK and they can both be active). Lists are also object
streams.

Note that that Streams like File, Data and ZeeLib are byte Streams, where the data is “flattened” to bytes
as it enters the stream. This means you can't use Pipes in programs that want byte streams, such as
Compiler.Asm.writeRootClass.

Closure
One thread closing a pipe is a signal to another thread that the thread is done, finished, kaput. Usually,
the producer closes the pipe when it has produced as much as it is going to and closing the pipe lets the
consumer know it has all the data it is going to get. But the consumer could also shut the pipe to tell the
producer to shut up and go away. In a nice way of course.

Breakage
Pipes can be broken. Pipes don't usually suffer from internal breakage, usually one of the users runs into
problems and breaks the pipe to let the other users know a problem has occurred. Here are a couple of
examples:

● If the Tokenizer finds a unterminated string, it will break the token output pipe to signal the
Parser that there is a syntax error.

● If the Parser sees an invalid token, it will break the token input pipe to tell the Tokenizer, if it is
still running, that there is no need to do any more work.

Activity
If you want to wait until the pipe is written to, use wait:
 Atomic.wait(True,pipe);
This will sleep until the pipe has data in it (or is closed). Of course, if there is more than one reader, the
data might be gone when wait returns.

260 Thread.Pipe

Objects

If you want to read the contents of a pipe (eg to keep it from clogging or to pass the data as a lump):
pipe.close(); pipe.walker().walk() → List

Examples
Here is very simple example of a program talking to itself:
 pipe:=Thread.Pipe(); pipe.write("Hello World!");
 println(pipe.read());
The output is (drum roll): “Hello World!”

This example creates a producer thread that writes to a pipe that is read by the main thread.
 fcn producer(pipe){
 pipe.write("one");
 pipe.write("two");
 pipe.close();
 }
 pipe:=Thread.Pipe();
 producer.launch(pipe); // create the producer thread

// the consumer reads the pipe until closed:
 foreach x in (pipe){ println(x); }
The output is:
 “one”
 “two”

A slight variation, with multiple producers.
 fcn producer(pipe){ pipe.write("one"); pipe.write(2); }
 p:=Thread.Pipe();

// create three producers
 producer.launch(p); producer.launch(p); producer.launch(p);
 while (x:=p.read(5)){ print(x); }
Output:
 one2one2one2
 VM#46 caught this unhandled exception: PipeError : Timeout waiting for data
Observations:

1. Three producer threads are created.
2. Objects of different types are written to the pipe.
3. One pipe is created and passed to each producer thread.
4. The Producer no longer closes the pipe. It can't because doing so would cause one of the other

threads to write to a closed pipe and error.
5. Since the pipe is never closed, foreach would hang after the last object is read from the pipe. It

left as an exercise to the reader to learn about thread control and figure out the proper way to
close the pipe. Hint: An Atomic.Int plus an Atomic.wait would do the trick. And, if you want to
see it in action, look the source code for Test.testThemAll.

6. As a cheap work around, a timeout is used to avoid blocking forever. A try/catch could be used to
handle the exception. It is a bad idea to rely on timing in cases like this – time is a weak concept
where threads are concerned.

 261

Objects

Now let's look two threads that talk to each other.
fcn A(inputPipe, outputPipe){
 outputPipe.write("Hello");
 reply:=inputPipe.read();
 println(reply);
}
fcn B(inputPipe, outputPipe){
 text:=inputPipe.read();
 outputPipe.write(text + " World");
}
p1:=Thread.Pipe(); p2:=Thread.Pipe();
A.launch(p1,p2); B.launch(p2,p1);

The output is: “Hello world”

A picture might help show the information flow:

A
 “Hello”

“Hello”
+

“ World”

B

Here is what happens:
● Two pipes are created, one for passing information from A to B and vice versa. Remember that

pipes are unidirectional so two are needed.
● Threads A and B are created, with the pipes crossed. This is because what is output for A is input

for B.
● A writes “Hello” to its output pipe and waits for a reply from B.

B waits for a message from A.
● B gets “Hello” from A, appends “ World” to it and sends it back to A.
● A receives “Hello World” from B and prints it.

Other fun examples:
● Ping Pong: Bounce data between threads until somebody decides enough is enough and closes a

pipe.
● Data Pump: Pass data around a chain of threads, back to the beginning.

Advanced Example: The Easy Bake Cookie Machine and Multi-Producer Pipes
Cookie Monster likes cookies. Lots of cookies. But making them takes too long. So, after a Internet
search, CM decides to buy some EasyBake Cookie Machines. The EasyBake Cookie Company makes
sophisticated automated industrial cookie baking machines that feature user selectable recipes and allow
multiple machines to be controlled by a single start switch. The machines all feed a single conveyor belt
that feed a single cookie packaging machine (or, this case, a Cookie Monster).

Now, let's build a EasyBake Cookie Machine. When the buyer receives their machine, they need to do
some simple configuring: Select the cookie recipe, connect it up to the conveyor belt and wire the

262 Thread.Pipe

P2

P1

Objects

“master” start switch. When the start switch is pressed, all the machines will start baking cookies and
send them to the conveyor when baked.
var cookieRecipes=
 T("peanut butter", "chocolate chip", "ginger snap");
class EasyBakeCookieMachine{
 const MAX_COOKIES = 2;
 const NO_MORE_COOKIES = Void;
 fcn init(cookieName, conveyor, startSwitch){
 launch(cookieName, conveyor, startSwitch);
 }
 fcn liftoff(cookieName, conveyor, startSwitch){ // thread
 println("The ",self.name," is ready to start baking ",
 cookieName," cookies.");
 startSwitch.wait();
 do(MAX_COOKIES){
 Atomic.sleep(0.001); // bake the cookie
 conveyor.write(cookieName); // cookie ready to eat!
 }
 conveyor.write(NO_MORE_COOKIES);
 }
}

Here is what a conveyor belt looks like:
 var conveyor=Thread.Pipe();
It is simply a Pipe that, very important!, can be written to by multiple producers. That is, many threads
can write to the pipe without the data being scrambled.
And, finally, the Cookie Monster:
class CookieMonster{
 fcn init{
 startSwitch:=Atomic.Bool();
 // Install and configure each machine
 foreach cookie in (cookieRecipes)
 { EasyBakeCookieMachine(cookie,conveyor,startSwitch); }
 numMachines:=cookieRecipes.len();

 cookiesEaten:=0; numEmptyMachines:=0;
 startSwitch.set(); // start making cookies!
 While(1){ // eat cookies until I burst
 // get the next available cookie
 cookie:=conveyor.read();
 if (not cookie){
 // one of the machines is out of cookie dough
 numEmptyMachines+=1;
 // stop eating when all machines are empty
 if (numEmptyMachines==numMachines) break;
 }
 else{
 cookiesEaten+=1;
 println("Yum, a tasty %s cookie!".fmt(cookie));
 }
 }
 println(cookiesEaten, " cookies eaten (burp).");
 }
}

 263

Objects

Now, let's start eating!
CookieMonster();

The EasyBakeCookieMachine is ready to start baking chocolate chip cookies.
The EasyBakeCookieMachine is ready to start baking ginger snap cookies.
The EasyBakeCookieMachine is ready to start baking peanut butter cookies.
Yum, a tasty peanut butter cookie!
Yum, a tasty ginger snap cookie!
Yum, a tasty chocolate chip cookie!
Yum, a tasty ginger snap cookie!
Yum, a tasty chocolate chip cookie!
Yum, a tasty peanut butter cookie!
6 cookies eaten (burp).

The important takeaway here (from the programming point of view anyway) is that Pipes can be multi-
producer.

Multi-Consumer Pipes
An exercise for the interested reader is to extend the cookie machine to add Bert to the mix (so to speak)
and have Cookie Monster and Bert engage in a cookie eating contest.

Another interesting bit of trivia about Pipes is that threads can pass a pipe amongst themselves and not
worry about contention.

Thread.Semaphore

Full name: [TheVault.]Thread.Semaphore
Inherits from: Class.

Abstract
The classic counting semaphore, an atomic object that guards a fixed number of shared resources

Functions
● init(availableResources=1):

Returns: Semaphore
● value(): Returns the number of threads holding a semaphore.

Returns: Int
● available(): Returns the number of available resources at this moment.

Returns: Int
● acquire(block=True):

Returns:
● release(): Returns a resource. Any thread can do this, not just a semaphore owner.

Returns: Int

264 Thread.Semaphore

Objects

Discussion
Semaphores are typically used to restrict access to a limited shared resource. An example would be a
database object that has five access connections. If there are ten threads who want to access the
database, only five can at any one time. A semaphore of five can be used to “nicely” control access. The
code might look something like:
class DB{
 var semaphore;
 fcn init{ semaphore=Thread.Semaphore(5); }
 fcn gimiAccess{ semaphore.acquire(); }
 fcn imOuttaHere{ semaphore.release(); }
 fcn read …
 fcn write …
}
db=DB();
db.gimiAccess(); // when this returns, I can access database
db.write …
db.release(); // let another thread have access

Thread.Straw

Full name: [TheVault.]Thread.Straw
Inherits from: Stream, Object

Abstract
A Straw is a one element Pipe.
See: Objects.Thread.Pipe

Thread.StrawBoss

Full name: [TheVault.]Thread.StrawBoss
Inherits from: Class

Abstract
Useful when one set of threads is pumping out objects that can be processed by an independent set of
threads. The two sets of threads are connected by a pipe (straw), though which the objects are pushed.

Class variables
● pipe: The pipe the class was created with.

Functions
● abortMission(e=Exception.BadDay): Stop and die. The contract has been

terminated, and the reason is in e.
● done(): Tell the workers to go home (exit), there is no more work coming down the pipe.
● init(f,n,thePipe=Thread.Pipe()): Start n worker threads, each of which will read

something from the pipe and send it to function or method f. You can think of this as
“f(pipe.read())”. F has to do something with the result, nobody else will touch it. Also, it is
common to send a list of parameters down the pipe so you may need to decant them; consider

 265

Objects

using f as an intermediate function to explode the parameters and call the “real” worker function
or use the Object.fp method to bind the parameters to f.
Call write to get work started.
Returns: StrawBoss

● lendAHand(): Throw some spare cycles at the problem. Instead of calling stopAndWait, do this:
done(); lendAHand(); wait();. This will effectively add you to the worker pool.

● stillRunning(): Returns a list of vmIDs of the the worker threads still running.
Returns: List

● stopAndWait(timeout=Void): Same as calling done(); wait();
● wait(timeout=Void): After done has been called, you can call this to wait for the workers to

finish what they are doing.
● write(x,timeout=Void): Same as pipe.write(x,timeout);

Discussion
A StrawBoss is useful when one set of threads is pumping out objects that can be processed by other
threads without repercussions. One example of this is a compiler that parses chunks of code that can
then be compiled to code. These chunks need to be free of interdependencies in order to avoid having to
“lock step”, which can kill parallelism. Read only dependencies are fine.

Example: Two simple examples:
// The worker function
// doesn't get much simpler than this
fcn f(x){ println(x, " ", vm); }

boss:=Thread.StrawBoss(f,5); // create 5 worker threads
foreach n in ("testing 123"){ boss.write(n); }
println("Waiting");
boss.stopAndWait(); // or boss.done();
 // boss.lendAHand(); boss.wait();
// Do something with the results
Output:

t VM#11
e VM#11
s VM#9
Waiting
t VM#11
i VM#9
n VM#8
1 VM#8
2 VM#8
3 VM#8
g VM#11
 VM#9

From this you can see that only three of the five threads go to do any work; there was so little to do that
they were able to hog it all. Also because the processing was so simple, the output is essentially serial.
This changes with more complex processing.

266 Thread.StrawBoss

Objects

More realistic code might include something like:
 strawBoss.write(vm.arglist); // (x,y,z)
 fcn f(x){ theRealF(x.xplode); } // f(L(x,y,z))→ theRealF(x,y,z)

Thread.Timer

Full name: [TheVault.]Thread.Timer
Inherits from: Class
See Also: Thread.Heartbeat

Abstract
Wait for while and then run a function. Analogous to a kitchen egg timer; you set the timeout and go off
and cook something else. The timer dings when the egg is done.

Functions
● cancel(): Call this if, having started a timer, you want to cancel the action (ie don't run the

function).
● go(): Start waiting

Returns: Timer, ie self
● init(funcToRun,secondsToWait): Get ready to run a function after a number of seconds has

lapsed. FuncToRun is anything that is runnable, such as Fcns, Methods, etc.

Discussion
A timer starts a thread and, basically, goes away and vegetates until time is up and then runs the function
and exits. Thus, the program that starts the Timer ticking can go do other things and forget about the
Timer. At the appointed time, the function starts running in the other thread and does whatever it does.
Since it is in another thread, it won't be able to talk to you unless you have set up some sort of
communications channel.

Example: run f after 10 seconds:
 t:=Thread.Timer(f,10);
 t.go();
or, the “just do it” method:
 Thread.Timer(f,10).go();

Example: Print "Ding" after 10 seconds:
 Thread.Timer(fcn{println("Ding")},10).go();

Example: Let's set up an alarm that will go off in one hour if not turned off. Basically, we arm the alarm
and, if we are not proactive, it will go off.
 fcn soundTheAlarm{ screamingSiren(); }
 alarm:=Thread.Timer(soundTheAlarm,3600).go(); // armed and ready
 doStuff();
 alarm.cancel();
If doStuff doesn't take more than one hour (3600 seconds), the alarm will be canceled before it goes off.
Otherwise, while stuff is happening, a big racket will occur.

 267

Objects

Time

Time and Date Objects

Abstract:
The Time section of the Vault holds objects and classes related to time and date manipulation. This
section covers some basic date calculations. For more elaborate date manipulation, check out ISO8601.

Time.Clock

Full Name: [TheVault.]Time.Clock
Inherits from: Object
See Also: Objects.Time.Date, Objects.Time.ISO8601

Abstract
The Time object provides some minimal information about time.

Methods
● mktime(y,m,d=1,h=0,m=0,s=0): Convert to time_t.

Returns: time_t (seconds from some starting point)
● tickToTock(time_t,local=True): Convert a time_t into a localTime or UTC time (if local is

False). A time_t is what time or File.info() returns;
Time.Clock.tickToTock(Time.Clock.time) is the same as Time.Clock.localTime.
Returns: List.

● toBool(): Returns True.

Properties
● localTime: Return the time in the current time zone in a List.

The list elements are:
0: Year: eg 2006
1: Month: 1 (January) … 12
2: Day of the month: 1 … 28,29,30,31
3: Hour: 0 … 23
4: Minute: 0 … 59
5: Seconds: 0 … 59
6: Possibly undefined elements
Examples:

● To get the current date: year,month,day = Time.Clock.localTime;
● To get the current year: year = Time.Clock.localTime[0]; or

year,_ = Time.Clock.localTime;
● The current time: _,_,_,hh,mm,ss = Time.Clock.localTime;

Returns: List
● runTime: Return the number of seconds that have occurred since zkl started running. The value

is a floating point number.
Returns: Float

● time: Returns an integer number of seconds from some starting point.

268 Time.Clock

Objects

Returns: Int
● timef: Returns time + fractional seconds.

Returns: Float
● timeZone: Returns information about the current time zone and day light savings time. The

information is returned in a List:
● Offset from UTC in seconds. For example, Pacific Standard Time trails UTC by eight

hours so the offset is 28800 seconds.
● The name of the current time zone (probably in English) or “”. For example: "Pacific

Standard Time".
● True if this time zone is currently in Daylight Savings Time.
● The name used for DST (probably in English) or “”. For example: "Pacific Daylight

Time".
Returns: List(Int,String,Bool,String)

● UTC: Returns the current Coordinated Universal Time (aka GMT) as a List. See localTime for the
list elements.
Returns: List

Operators: None

Discussion
The Clock object relays information about time obtained from the operating system. It is a minimal set
and is dependent on the OS for accuracy. The Time.Date and Time.ISO8601 classes build on this
information to provide more complete time and date information.

Time.Date

Full name: [TheVault.]Time.Date
Inherits from: Class
See Also: Time.Clock, Time.ISO8601 (non core)

Abstract
A class that provides a collection of date related utilities. Uses ISO8601 format where applicable.

Class variables
● The months:

January, February, March, April, May, June, July, August, September, October,
November, December
Symbolic constants that can help make your code a little cleaner. January is 1, December is 12.

● The days in a week:
Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday
Symbolic constants, in ISO8601 order: Monday is 1, Sunday is 7.

● dayNames: A list of day names (in English): L(“Sunday”,”Monday”,…”Sunday”).
These can be indexed by the day variables.
Date.dayNames[Date.Monday] → "Monday". Note that the names work for both ISO8601 and
for calendars that use Sunday as the first day of the week (Sunday = 0).

 269

Objects

● monthNames: A list of month names (in English): L(“”,“January”, …, “December”). These can be
indexed by the month variables.
Date.monthNames[Date.April] → “April”

Functions
● addHMS(L(Y,M,D,h,m,s), hr,mn=0,sec=0): Add time to a date.

Returns: L(Y,M,D, h,m,s)
● addYMD(L(Y,M,D), y,m,d): Add an offset to a date. When adding months and years, the day

tries to remain the same, in the same month, modulo the number of days in the resulting month.
The input is not validated.
Time.Date.addYMD(T(2010,12,2), 0,1,2) → L(2011,1,4)
Throws: ValueError
Returns: L(Y,M,D)

● ctime([time_t]): A clone of the C routine of the same name. Returns a time stamp using the
current [local] time and date, for example “Mon Jan 8 02:00:51 2007”. If a time_t is passed in
(for example from File.info()), that time is used; ctime() and ctime(Time.Clock.time) are
equivalent.
Returns: String

● dayName(weekday): Returns the English name for a day. 0 is “Sunday”, 1 is “Monday” and 7 is
again “Sunday”, which works for calendar weeks that start with Monday (ISO8601) or Sunday.
Returns: String

● daysInMonth(year,month): Calculates the number of days in a particular month, taking into
account leap years. Example:
daysInMonth(2006,Date.February) ≈ daysInMonth(2006,2) → 28
Returns: Int

● daysInYear(year): Calculates the number of days in a year, taking into account leap years.
Examples
Date.daysInYear(2006) → 365
Date.daysInYear(2000) → 366
Returns: Int

● httpDate(): Returns the current date in HTTP 1.1 [header] format. For example:
“Sun, 06 Nov 1994 08:49:37 GMT”
Returns: String

● isLeapYear(year): Evaluates if year is a leap year.
Returns: Bool

● monthName(month): Returns the English name for a month. 1 is “January”, 12 is “December”.
Returns: String

● monthRange(year,month):
Calculates the number of days in a month and the week day that month starts on. Useful for
creating calendars. The week is Monday based, and starts at one. For example, January 2007 has
31 days and starts on a Monday. So
monthRange(2007,1) ≈ monthRange(2007,Date.January) → L(1,31)
Returns: L(first_day_of_the_month, days_in_month)

● nthDayInYear(year,month,day): Calculates the nth day of the year a date falls on.
Examples:

● The first day in 2006: nthDayInYear(2006,1,1) → 1
● In 2006 there were 365 days so 2006-12-31 was day 365

270 Time.Date

Objects

Time.Date.nthDayInYear(2006,12,31) → 365
Returns: Int

● parseDate(dateString): Parse a date string of the form “yyyy-mm-dd” where the three fields
are one or more digits. If the year is less than 1,000, 2,000 is added. The month and day are
verified.
Time.Date.parseDate("11-8-1") → L(2011,8,1)
Time.Date.parseDate("2011-2-29") → ValueError, 2011 is not a leap year
Leading and trailing space is OK.
Blank entries are auto filled with the current date: “--” is now, “--1” is the first day of the current
month/year.
Throws: ValueError
Returns: List(year,month,day) (as integers)

● parseTime(timeString,limitHours=True): Parse a time string of the form “hh:mm:ss” where
the three fields are zero or more digits. If limitHours is True, time is restricted to one day and
“AM”/“PM” is parsed (case independent).
Time.Date.parseTime("1:2pm") → L(13,2,0)
Time.Date.parseDate("::3") → L(0,0,3)
Throws: ValueError
Returns: List(hours,minutes,seconds) (as integers)

● prettyDay([year,month,day]): Pretty print a date, defaulting to the current date. Algorithm
by Tamminen Eero. Examples:
prettyDay(1995,3,9) → “Thursday, the 9th of March 1995”
prettyDay() → “Monday, the 8th of January 2007”
Returns: String

● subYMD(L(Y,M,D), y,m,d): Subtract an offset from a date. When subtracting months and years,
the day tries to remain the same, in the same month, modulo the number of days in the resulting
month.
The input is not validated.
Time.Date.subYMD(T(2011,1,2), 0,1,2) → L(2010,11,30)
Time.Date.subYMD(T(2000,2,29),1,0,0) → L(1999,2,28) // leap year
Throws: ValueError
Returns: L(Y,M,D)

● to24HString(): Return the local time as a 24 hour clock string.
Returns: String “13:45”

● toAMPMtring(): Return the local time as a 12 hour clock string.
● toAMPMString(h,m): Use the passed in time.

Returns: String “01:23AM”
● toFloat(h,m,s=0): Convert hh:mm.ss to a fractional number representing the time. For

example, toFloat(4,15) → 4.25 (since 15 minutes is one quarter of an hour).
Returns: Float

● toHMSString(h,m,s): Convert hours, minutes and seconds to a string.
Time.Date.toHMSString(0,0,5025) → “01:23:45”
Returns: String “HH:MM:SS”

● toHour(fractionalTime): Convert a fractional time to hours, minutes and seconds. For
example, toHour(4.255) → L(4,15,18)
Returns: L(h,m,s), list of integers

● toYMDString(y,m,d): Format a date, four digits for the year, two digits for the month and day.

 271

Objects

Returns: “yyyy-mm-dd”
● week01(year): Returns the Monday of the first week in year, which actually might be in the

previous year. Uses the ISO8601 rules. Examples:
● The first week of 2006 started Monday, January 2nd. week01(2006) → L(2006,1,2)
● The first week of 1987 started on Monday, the 29th of December 1986 (1986-12-29):

week01(1987) → L(1986,12,29)
Returns: L(year,month,day)

● weekDay([year,month,day]): Returns the day in the week for a date using the ISO8601
notation (1 = Monday, 7 = Sunday). Defaults to the current day.
For example: weekDay(2007,February,6) → 2 (Tuesday)
Returns: Int

● weeksInYear(year): Calculates the number of weeks in a year, according to the ISO8601 spec.
A year has 52 weeks (364 days) or 53 weeks (371 days) in it.
Returns: Number of weeks

● zeller(y,m,d): Returns the day in the week for a date using Sunday centric notation (0 =
Sunday, 1 = Monday, 6 = Saturday). This is a version of Christian Zeller's algorithm as modified
by Tomohiko Sakamoto.
Returns: Int

Discussion
The Date class provides a collection of functions that can tell you some basic things about dates. It is
ISO8601 (an international standard for date and time representation) centric, mostly in that Monday
starts the week, rather than Sunday. However, if you want to work in a Sunday centric calendar, there is
usually a parallel routine or easy work arounds. A much more extensive set of date manipulations can be
found in Time.ISO8601.

272 Time.Date

Objects

Utils

Utilities

Abstract
The utilities are a collection of small, useful functions and classes.

Utils.Argh

Full name: [TheVault.]Utils.Argh
Inherits from: Class

Abstract
A Class to parse a Unix-like command line.
A data structure is built that describes the available options which is then used to parse a command line
(a list of words). It can also be used to print a usage line.
Two parsing options are provided: A “traditional” loop through the options or callback functions.

Class variables
● leftOvers: Holds the parameters that occur after a “--”. For example, in “-f foo --gui -- bar”,

leftOvers → L(“bar”).
● loners: Holds the non option parameters. In “-f foo --gui bar”, loners → L(“bar”).

Functions
● init(L([+]option_long_name,short_name,doc_string),…): Create a option template. Each

option is described by a three item list:
● The long name, that is, the option that is prefixed by a “--”. If the name starts with a “+”,

the option requires a parameter. For example: “compile” (--compile) or “+file” (for --file
file_name).

● The single character name for the same option. For example: “c” (-c) or “f” (-f). If there
is no short name, use “”.

● A doc string. A very short (one line) option description. This is used printing a usage
message. For example: “Compile a file” or “File to compile”.

Using the above examples, the call to init would be:
 Argh(T("compile","c","Compile a file"),
 T("+file","f","File to compile"));

● init(L([+]option_long_name,short_name,doc_string,fcn),…): Same as above, except
provides a callback function for each option. Can be intermixed with the above form (ie it is OK
to have both types of options).
Returns: Argh Class

● parse(list,complain=True): Parse a command line against options. The command line is any
list that looks like argv, a list of strings. For example:
 parse(vm.arglist); // the part of argv passed to scripts
 parse(L("-c","—file","foo.bar"));
 cmdLine="-c —file foo.bar"; parse(cmdLine.split());
The line is parsed left to right, call backs are called as they are encountered.
Throws: NameError, ValueError if the list has errors in it.

 273

Objects

Returns: List of (option_long_name, value) pairs.
● usage([text[, …]]): Print a usage message to stderr. If called with parameters, they are

printed first, one per line. For example:
● usage();

Options:
 --compile (-c) : Compile a file
 --file (-f) <arg>: File to compile

● usage("The compiler program");
The compiler program
Options:
 --compile (-c) : Compile a file
 --file (-f) <arg>: File to compile

Returns: Unknown

Example (Looping)
 argh:=Import("Utils.Argh")(
 T("compile","c","Compile something"), // --compile, no arg
 T("+file","f","File name")); // --file <arg>

 foreach option,arg in (argh.parse(vm.arglist)){
 switch(option){
 case("compile"){ … }
 case("file") { … }
 }
 }
 klass(argh.loners.xplode());

Example (Callbacks)
 var file;
 argh:=Import("Utils.Argh")(
 T("compile","c","Compile something", // --compile, no arg
 fcn{ Compiler.Compiler(file) }),
 T("+file","f","File name", // --file <arg>

 fcn(arg){ file=arg; }),
);
 argh.parse(vm.arglist);

You can mix and match callbacks or no callbacks as you please. But remember that callbacks will be
called before you get a chance to use looping.
These examples are examined in detail below.

Discussion
The Argh class provides a convent way to parse Unix command line options. Or any list of strings that
looks like a Unix command line. Using the class consists of three phases: creating the possible options,
parsing the command line, and finally, acting on the command line.

Format
A command line can contain several things:

● A word, such as “foo.c”
● A single character option, prefixed by a dash: “-c”

274 Utils.Argh

Objects

● A single character option that takes a parameter: “-f foo.c”
● Multiple single character options, the last of which can take a parameter: “-cf foo.c”
● Note: the space between the option letter and parameter is optional.
● A option word (one or more characters), prefixed by two dashes: “--compile”
● A long option with parameter: “--file foo.c”
● Notes:

● Space between the long option name and parameter is required
● Long and short options can’t be mixed together
● Options are case sensitive.

● Non options are words that don’t start with a dash and are not parameters to options. These are
collected separately.

● “--” signals the end of commands and the rest of the line is to be handled verbatim. These are
collected separately.

Class Creation
To create a class that handles “-c”, “--compile”, “-f” and “--file”, do the following:
 argh=Utils.Argh(

 T("compile","c","Compile something"),
 T("+file","f","File name"));

The Argh initializer takes a list of options: The long name of the option, prefixed by “+” if a parameter is
required, the short name of the option (or “”) and a short description that is used for a “help” or usage
message.
You can also attach a callback function to each option. In this case, the callback will be called as each
option is parsed (and will be passed the arg associated with the option).

Parsing
Unlike many command line handlers, Argh parses the command line at once, rather than parse option,
dispatch, repeat. The input is left unchanged. To parse the command line for f, file, c or compile:
 parsedArgs=argh.parse(vm.arglist);
For scripts, startup passes the script constructor a “pruned” argv, so the script can work the same in a
named function, ie the script doesn't care if the arglist originated at the command line or from a function
call. Parse will throw NameError or ValueError if it encounters an unknown option or if an option is
missing a parameter. It will also print a usage message to stderr (if the complain flag is True):
 >zkl foo -f

Option "f" is missing an arg
Options:
 --compile (-c) : Compile something
 --file (-f) <arg>: File name
ValueError : Option "f” is missing an arg

 >zkl foo -–foo
Unknown option: foo
Options:
 --compile (-c) : Compile something
 --file (-f) <arg>: File name
NameError : Unknown option: foo

 275

Objects

Parse returns a list of options found and their values:
 >zkl foo -f foo.bar --compile
 → L(L("file","foo.bar"),L("compile",False))

Processing
Now that the command line has been parsed, it can be processed.
Looping:
 foreach option,arg in (vm.arglist){
 switch(option){
 case("compile"){ … }
 case("file") { … }
 }
 }
Callbacks: argh.parse(vm.arglist)
And if you want to be terse, the example can be written:
 var file;
 Import("Utils.Argh")(…).parse(vm.arglist);

Here we do whatever it is we need to do if told to compile and what file it is we are to compile. Let's add
to the example and assume we want to run the compiled object with some parameters that are also
passed in. For example:
 > foo –ffoo.zkl –c one two
We have seen what most of this parses to as but what about “one” and “two”? The argh class puts the
parameters that are not options into a “loners” list. In this case:
 L("one","two") // argh.loners
So, to run something with these parameters:
 something(argh.loners.xplode());
will call something with two parameters, rather than a list.

Yet another thing Unix command lines handle is the “--” option, which signals end of normal parsing. In
this case, argh bundles this into “leftOvers”:
 > foo –ffoo.zkl –c one two -- sam
 argh.leftOvers → L("sam")

Utils.BlackHole

Full name: [TheVault.]Utils.BlackHole
Inherits from: Class

Abstract
An object that has only Class methods and properties but has all methods and properties. Like
File.DevNull, only more so.

Discussion
A useful data sink. It needs to be in a variable to be a sink:
 bh:=Utils.BlackHole; bh.eatTheGalaxy() → BlackHole
 bh.galaxy → BlackHole

276 Utils.BlackHole

Objects

A BlackHole will eat most non-Object methods and properties and return itself. Use it as a stub for a not
yet defined class.

Utils.Generator

Full name: [TheVault.]Utils.Generator
Inherits from: Class
See Also: The Illustrated Examples Appendix for a discussion of how generators are implemented.

Abstract
Create a Generator that can be used to iterate over a collection. Generators are implemented with fibers,
which means the (user supplied) generator function needs to use vm.yield to “generate” data.
Note: Pay special attention to when you can call yield (see Objects.VM.yield).

Functions
● init(f [,parameters]): Create a Generator. f is a function that uses vm.yield to return

values. Parameters are passed to f on the first call.
Returns: Walker

Discussion
Generators are useful when you want to create a recursive walker. Ordinary Walkers can't be
implemented recursively, which is really painful for things like tree traversals. Using a generator, you
can write a recursive traversal, wrap it in a Generator and get all the benefits of a Walker. That sounds
more painful than it actually is. For example, consider the depth first traversal of a binary tree. Here is a
code snippet:
 class Tree{
 var root;
 …
 fcn walker{ Utils.Generator(walk,root); }
 fcn walk(node){
 if (node){
 vm.yield(node);
 self.fcn(node.left);
 self.fcn(node.right);
 }
 }
 }
The walk function traverses the tree and uses vm.yield to pass the node it is visiting back to the walker.
When it is done, it just exists. This a natural way to write the traversal. The Tree walker function
packages walk into a Generator. Thus
 tree:=Tree();
 foreach node in (tree){ println(node.payload); }
behaves as expected. You can also use the generator directly:
 g:=Utils.Generator(tree.walk,tree.root);
 println(g.next().payload);

See Objects.VM for more about this example.

 277

Objects

Coroutines

Generators can also be used to implement the classic producer/consumer coroutine algorithm:
 fcn producer(resource)
 { foreach x in (resource){ vm.yield(x) }}
 fcn consumer(producer){
 result:=L();
 foreach x in (producer){ result.append(x); }
 result;
 }
Given a resource (such as a file, string, list, database, etc), the producer reads something and yields it.
The consumer reads from the producer, does something with what it read, and tells the producer to do it
again until there is nothing left to read. The consumer then returns the result of its calculations.
 consumer(Utils.Generator(producer,"This is a test"));
 → L(“T”,“h”,“i”,“s”,“ ”,“i”,“s”,“ ”, “a”,“ ”,“t”,“e”,“s”,“t”)

 consumer(Utils.Generator(producer,File("helloWorld.txt")));
 → L(“Hello World\n”)
To do the same thing with threads requires a thread safe123 way of passing data between the producer and
consumer. With fibers, there is only one process so no locking is needed.

The consumer can also be written as:
 fcn consumer(producer){ producer.walk(); }

Utils.Helpers

Abstract
A collection of utility functions.

● blowChunks(walkable,sz,sync=List): Consumes the source in chunks of size sz.
Utils.Helpers.blowChunks("12345",2).walk() → L(L("1","2"),L("3","4"),L("5"))
Utils.Helpers.blowChunks("12345",2,String).walk() → L("12","34","5")
Throws: TheEnd (source is empty)
See also: pump with Void.Read
Returns: Walker

● fcomp(f,g ...): Function composition
 f:=Op("+",1); g:=Op("*",2); h:=Op("-",3);
 fgh:=Utils.Helpers.fcomp(f,g,h);
 fgh(10) → 15 as f(g(h(10))) → f(g(7)) → f(14) → 15
The same thing:
 fcn f(x){ x+1 } fcn g(x){ x*2 } fcn h(x){ x-3 }
 fgh:=Utils.Helpers.fcomp(f,g,h);
 or
 T(10).pump(Void,h,g,f)
Note that fgh:=f.fp(g.fp(h)) doesn't work. In this case fgh(10) would pass 10 to f, not h.
Returns: Deferred closure

● gerber(action,T(collection,filters)1,…,T(c,fs)N) → List
● gerber(True, action,T(collection,filters),…) → Walker

123Such as a Pipe, which does the locking needed to be thread safe.

278 Utils.Helpers

Objects

Where action is a runnable that will be called with N parameters, collection is a Walker or
something that has a walker method124 and the filters (with collectionx) are runnables that will be
called with x parameters.
List comprehensions125, nested loops with conditions or guards.
The first collection (or walker) is iterated over and, if an item passes all filters, the next
collection/filter list is examined, repeat all the way down. A collection of items (length N) that
makes it to the end is passed, as a parameter list, to action.
Examples:
 Utils.Helpers.gerber(fcn{vm.arglist}, // filtered results
 T(T(1,2)), // a simple collection
 T([7..9]), '!=(8)), // everything but 8
 T(["a".."a"])) // just "a"
 → T(T(1,7,”a”), T(1,9,”a”), T(2,7,”a”), T(2,9,”a”))
 Utils.Helpers.gerber(True, fcn{vm.arglist}, // → Walker
 T([1..]), // an infinite collection
 T([7..9], '!=(8)),
 T(["a".."a"])) : w:=_; // w=Walker
 w.walk(5) → T(T(1,7,”a”), T(1,9,”a”), T(2,7,”a”), T(2,9,”a”) , T(3,7,”a”))
 Utils.Helpers.gerber('*(2),
 T([0..8], fcn(n){n*n > 20})) → L(10,12,14,16)
 which is the same as:
 [0..8].filter(fcn(n){ n*n>20 }).pump(List,'*(2))
If there is only one finite collection and you don't need a walker, it is usually easier to use filter
and pump, as shown in the last example.
If creating a Walker and gerber doesn't generate any results, TheEnd is thrown:
 Utils.Helpers.gerber(True,fcn{},
 T([1..10],fcn{False})).walk() → TheEnd
 gerber(True,fcn{},T([1..0])).walk() → TheEnd
If you don't like that, use pump instead of walk:
 gerber(True,fcn{},T([1..0])).pump(List) → L()
Returns: List or Walker

● listUnzip(listOfLists): Create a new list of lists, each sublist is made from one item from
each of the source sublists.
 Utils.Helpers.listUnzip(T(T(1,2),T(3,4),T(5,6)))
 → L(L(1,3,5),L(2,4,6))
Note: listUnzip(listUnzip(a)) → a
Returns: List of lists, very much like List.zip

Utils.MD5

Full name: [TheVault.]Utils.MD5
Inherits from: Method
References: RFC 1321 (http://www.ietf.org/rfc/rfc1321.txt)
See Also: MsgHash library for other hashes.

Abstract
Calculate the MD5 hash of a String or Data object.

124All but the first walker need to be able to be restarted (eg List but not File or Pipe).
125http://en.wikipedia.org/wiki/List_comprehension

 279

http://www.ietf.org/rfc/rfc1321.txt
http://en.wikipedia.org/wiki/List_comprehension
http://en.wikipedia.org/wiki/List_comprehension

Objects

Utils.MD5 is a method.

Utils.MD5(String | Data): Calculate the MD5 hash.
Throws: TypeError
Returns: String

Discussion
From the RFC (Request For Comment):

This document describes the MD5 message-digest algorithm. The algorithm takes
as input a message of arbitrary length and produces as output a 128-bit
"fingerprint" or "message digest" of the input. It is conjectured that it is
computationally infeasible to produce two messages having the same message
digest, or to produce any message having a given prespecified target message
digest. The MD5 algorithm is intended for digital signature applications,
where a large file must be "compressed" in a secure manner before being
encrypted with a private (secret) key under a public-key cryptosystem such as
RSA.

Examples
● Utils.MD5("message digest") → “f96b697d7cb7938d525a2f31aaf161d0”
● Calculate the MD5 hash of a file: Utils.MD5(File("foo","rb").read())

Utils.range

Full name: [TheVault.]Utils.range
Inherits from: Fcn
Syntax: range(count), range(start,stop,step=1)
Returns: Walker
See Also: Keywords.Range, Objects.Int.Walker, Objects.Walker, Keywords.foreach

Abstract
Range creates a Walker that provides the functionality of the “traditional” for loop: iterating in discrete
steps. Ranges are over Ints, Floats or characters.

Functions
● range(n): Returns range(0,n,1)
● range(start,stop,step=1): Count up or down by step.

If stop is “*”, the sequence is infinite (unless it is a character range).
Throws: ValueError
Returns: Walker

Discussion
Range provides more information than a do() loop; mainly control of the step size and an index variable
at the expense of verbosity and overhead. Range is intended to provide similar functionality to C's for
loops. A range Walker has all the functionality of a Walker.
zkl C equivalent (int i; float f;)
foreach i in (Utils.range(10)) for (i = 0; i < 10; i++)
foreach i in (Utils.range(3,10)) for (i = 3; i < 10; i++)

280 Utils.range

Objects

zkl C equivalent (int i; float f;)
foreach i in (Utils.range(10,0,-1)) for (i = 10; 0 < i; i--)
foreach f in (Utils.range(0.0,1,0.1)) for (f = 0.0; f < 1.0; f += 0.1)
foreach i in (Utils.range(3,*)) for (i = 3; 1; i++)
do(10) for (i = 10; --i;)

Special Cases
● Character ranges: Utils.range("a","d") → “a”, “b”, “c”, “d”

* isn't special: Utils.range((40).toChar(),*) → “(”,“)”, “*”, thus Utils.range("a",*) →
[] as “a” > “*”.
Only the first character is used. range("efg","abc",-2] → “e”, “c”, “a”
This is restricted to ASCII characters.

● The terminal value of a range might be excluded:
range(0.5,3) → 0.5, 1.5, 2.5
range(1,6,2) → 1, 3, 5

Utils.Wad

Full name: [TheVault.]Utils.Wad
Inherits from: Class

Abstract
A wad is a bunch of ZSCs (ZKL Serialized Class) “wadded” into a byte stream that can then be
packaged into a file. This is somewhat analogous to a [extremely limited] TAR (Tape ARchive) or JAR
(Java ARchive) file.

Functions
● buildWad(manifest): Convert the items listed in the manifest into a wad. The manifest is a list

of items that describe each wad entry. Each item is one of:
● A class name (that can be consumed by Import) or a class.
● A L(name,run) pair. The name is as above and run controls the running of the constructor

at load time:
● 1/True if the constructor should be run when the wad is loaded. This is the normal

case. An empty parameter list is a passed to the constructor (which is normal for
constructors).

● 0/False/Void: Don't run the constructor. This is for scripts that will be run later.
For example, a library of scripts.

● 2 if the class is a script that should be run with parameters126 when loaded. f
Import(don't run constructor) is used to load the wad, this is treated as if it were 0
(when loaded by Import).

● A L(Data,vault path) pair. This can be used to stuff arbitrary [binary] data into the Vault.
The path is used verbatim to create the vault path, no sanity checking is done.

● If you want to store a text file in a wad, append a zero127.

126The parameters are passed in from System.loadFile, Import, the command line, etc.
127Once a Data enters a wad, it becomes a ConstData and, unlike a Data, can't grow to include the trailing zero that strings

need.

 281

Objects

text=File("text.txt","r").read().append(0);
For example:
manifest=
 // Get helpers from the Vault, run constructor
 T("Utils.helpers",
 "Compiler/compiler.zsc", // get class from file system
 L("script.zsc",0), //load file, don't run constructor
 L(File("jj.jpg","rb").read(), // Data
 "Pictures.jpg"),
);
If the run constructor field is missing, it is filled in based on the isScript property (scripts are not
run).
See Also: Objects.System.loadFile
Throws: LoaderError, others
Returns: Wad

● verifyWad(wad): Basically does a dummy load of the wad to verify its correctness. Prints out
some information.

● wadToC(wad,stream=Console,wadName="wad"): The wad is converted into a C data structure
that can be loaded at runtime (see wad.c). It is basically a huge unsigned array of chars.

Discussion
Wads are a convenient way to package Classes for inclusion in C code or for binary distribution. zkl
itself uses a giant wad to store the classes that are considered part of the “core” language. A program
might consist of several files, making distribution “messy”; packaging them in a wad enables the end
user to consider them a single unit.

Import, MinImport, System.loadFile, and System.loadFile2 will all load a wad file, although the
importers want the file to have a “.zsc” extension.

All the Classes in the wad are stored into the vault, which means they need to use the AKA keyword.

Examples
Here is how the zkl wad is built (lots of files are missing for brevity):
Var Wad=Import("Utils.Wad");
var manifest=T(
 "exception.zsc", "minimport.zsc", …,
 L("Compiler/compiler.zsc",666),…,L("startup.zsc",0));
wad:=Wad.buildWad(manifest);
Wad.verifyWad(wad);
Wad.wadToC(wad,File("wad.c","wb"));

282 Utils.Wad

Objects

The output looks like:
Building wad: 124,831 bytes
Wad header
 Protocol: 1.0
 Infomercial: zkl Wad
 Time Stamp: Mon Feb 18 11:19:40 2008
 Number of ZSCs: 13
 Data size: 154,280 bytes
 Run list: 1111101101110
 Flags:
 Class Name Offset Size Run
 ----- ---- ------ ---- ---
 Exception 0 7,307 1
 MinImport 7,307 476 1
 Utils.Helpers 7,783 10,859 1
…
 startup 148,096 6,184 0
Note: startup was explicitly set to not run the constructor, testThemAll was set implicitly based on the
fact it is a script.

wad.c looks like:
/* This file is machine generated (by Wad.wadToC)
 * Don't mess with it, your efforts will be in vain.
 * Generated Mon Feb 18 11:19:40 2008
 */
 // Number of ZSCs: 13
 // Exception MinImport
 // Utils.Helpers Thread
 // Utils.Argh Nested Wad(Compiler/compiler.zsc)
 // Import Test.UnitTester
unsigned char wad[154666] = {
0x20,0x20,0x77,0x5f,0x8a,0x00,0x01,0xda,0x31,0x2e,0x30,
…
}
In this example, the file order is very important because of the interdependencies128. For example, the
constructors of the compiler components will try to load the other components, so those need to be
added to the Vault first.

Script Example
The next example is very simple. We would like a script to print the current time and date. The code
looks like:
 AKA(nowIsTheTime); // needed by buildWad
 d:=Import("Time.ISO8601");
 println("It is now ", d.DateTime().pretty());

The problem is that the ISO8601 class isn't part of the core, so this code won't run unless the zkl tree is
around (we'll ignore details like Date would work just as well and other irritating facts). What we can do
is package ISO8601 and the above code:

128The loader processes the wad serially, a class is read, constructor run (if it should be) and stuffed into the Vault. Then the
next class is processed.

 283

Objects

 Wad:=Import("Utils.Wad");
 wad =Wad.buildWad(L("Time.ISO8601","nowIsTheTime.zkl"));
 Wad.verifyWad(wad); // verify wad
 f:=File("nowIsTheTime.zsc","wb"); f.write(wad); f.close();
Build the wad:
Building wad: ..
Wad header
 Protocol: 1.0
 Infomercial: zkl Wad
 Time Stamp: Tue Apr 17 22:16:21 2007
 Number of ZSCs: 2
 Data size: 9765 bytes
 Run list: 10
 Flags:
 Class Name Offset Size
 ----- ---- ------ ----
 Time.ISO8601 0 9571
 nowIsTheTime 9571 194
Checking: ..
And run it:

>zkl nowIsTheTime
It is now 22:24:05 Tuesday, the 17th of April 2007

Utils.wap

Full name: [TheVault.]Utils.wap
Inherits from: Fcn
Syntax: wap(f), where f is something that throws TheEnd or IndexError
Returns: Walker
See Also: Objects.Walker

Abstract
Create a Walker using a callable that throws TheEnd (eg another Walker or Data.readln) or IndexError
(eg List.__sGet).
A wap'd callable gets called with one parameter: 0,1,2,3, … Use .fp* to change this.

Discussion
Very useful for creating Walkers from scratch.
Examples:

● Walkers typically start at the beginning of an object. What if you'd rather start in the middle?
Using Data as an example:
 d:=Data(0,String,"This","is","a","test");
 d.seek(8); // start at character 8
 w:=Utils.wap(d.readln.fpM("")); // NO parameters
 w.walk() → L(“a”,”test”)
This creates a Walker that using d.readln() calls. Since readln(n) means something, by using
.fpM(“”) we ensure readln gets no parameters.

● Given a Walker, how to enumerate it? (Enumerators, for this discussion, transform each i into
L(n,i), where n is 0,1,2, …). Using “w” from the previous example:

284 Utils.wap

Objects

 w2:=Utils.wap('wrap(n){return(n,w.next())});
 w2.walk() → L(L(0,”a”), L(1,”test”))

● fcn w2(w){ w=w.walker();
 Utils.wap('wrap(){T(w.next(),w.peek())}).walk()
}
w2("1234") → L(L("1","2"),L("2","3"),L("3","4"))
p:=Thread.Pipe(); p.write(1).write(2).write(3).close();
w2(p) → L(L(1,2),L(2,3))

Utils.zip

Full name: [TheVault.]Utils.zip
Inherits from: Fcn
Syntax: zip(object,…) → L(L(obj0[0],obj1[0],…), L(obj0[1],…),…)
Returns: List of lists

Abstract
The same as zipWith(ROList.create,obj,obj,…) except the objects have to support a “get”
method, not a “walker” method.

Utils.zipWith

Full name: [TheVault.]Utils.zipWith
Inherits from: Fcn
Syntax: zipWith(f,walkable,…) → L(f(w0[0],w1[0],…), f(w0[1],…),…)
 zipWith(False,f,walkable,…) → f(w0[n],…,wm[n])
 zipWith(Void,…) → zipWith(idFcn,…)
Returns: List or last result

Abstract
Stack a group of collections and pass vertical slices to a function.

Discussion
Runs f with parameters from each walkable until any one of the walkers is exhausted. If the first
parameter is False, the results are not aggregated.
Utils.zipWith('+,T(1,2,3,99),T(4,5,6)) → L(5,7,9)
Utils.zipWith(False,fcn(n,line){"%3d: %s".fmt(n,line).print()},
 [1..],File("foo.txt"))
 → 1: file foo
 2: line two of foo
Utils.zipWith(Void,[0..],["a".."c"])
 → L(L(0,"a"),L(1,"b"),L(2,"c"))
You can write enumerate like so129:
 var enumerate=Utils.zipWith.fp(Void,[0..]);130

 enumerate("abc") → L(L(0,"a"),L(1,"b"),L(2,"c"))
 enumerate("abc","hoho") → L(L(4,"a","h"),L(5,"b","o"),L(6,"c","h"))

129Note: since the function is a partial (ie the counter is closed over), it does not reset across calls.
130Note that enumerate() is an infinite list

 285

Objects

How about file enumeration in parallel?
 pipe:=Thread.Pipe();
 fcn{File("foo.txt").pump(Void,pipe.write); pipe.close()}
 .launch(); // create thread
 Utils.zipWith(False,
 fcn(n,line){"%2d: %s".fmt(n,line).print()},
 [1..],pipe);
This creates a thread that reads a file line by line and writes it to a pipe. When done, it closes the pipe
(which is very important as it tells zipWith when to stop). zipWith then combines a counter with the
lines.

286 Utils.zipWith

Objects

Vault and TheVault

Full name: [TheVault.]TheVault, [TheVault.]Vault
Inherits from: Object
Notes: TheVault is a reserved word, Vault is not.

Abstract
The Vault provides a global store for “native” objects and classes.

Use TheVault.BaseClass or Vault to access the methods and properties.

Methods
● add(class | native [,path]): Add something to the vault. If path is present, and is a string,

it is used to specify the location of the object. If not present, the vaultPath property is used (for
classes, vaultPath is set with the AKA keyword).
If the path doesn't exist, it is created.
Throws: ValueError
Returns: True

● addAs(object,path): Add something to the vault. Path is used to specify the location of the
object.
If the path doesn't exist, it is created.
Returns: True

● bestFit(path): Returns the longest number of characters that match the name of something in
the Vault.
Examples:
 TheVault.BaseClass.bestFit("Walker") → 6
 TheVault.BaseClass.bestFit("Walker.range") → 6
To get the object that has the best fit, use find. For example:
 path:="Walker.range";
 n:=TheVault.BaseClass.bestFit(path);
 Vault.find(path[0,n]); → Walker
Returns: n (0 if no match)

● cache(): The Vault contains a cache of commonly used objects that the VM requires. This
method returns the contents of that cache. Used by the compiler as an optimization in
conjunction with the opVCache instruction.
Returns: List of objects

● cache(object): Searches the cache for object and returns its cache index. For example:
Vault.cache(List) or Vault.cache(TheVault.List). The match has to be exact; this doesn't
work: Vault.cache(List()).
Returns: Int or Void

● cache(Void,name): Search the cache for an object named name. If found, return the cache
index. This is shorthand for: Vault.cache(TheVault.name) or
Vault.cache(Vault.find("name")). For example: Vault.cache(Void,"List").
Returns: Int or Void (if name not found).

● cache(Void,n): Returns the nth entry in the cache.
Throws: ValueError if n is out of range.

 287

Objects

Returns: Object
● chase(path): Follow path, using resolve, starting at the top of the Vault. This is an “extended”

resolve.
Examples:
 TheVault.BaseClass.chase("Walker") → Walker
 Vault.chase("Walker.range") → Fcn(range)
Throws: NotFoundError
Returns: Object

● dir(outputClass=Console): Writes a sorted, formatted list of the Vault contents to the output
class. For example:
 Atomic
 Compiler
 Asm
 Compiler
 Parser
 Console
To write the list to a file:
 TheVault.BaseClass.dir(File("foo.txt","w"));
Throws:
Returns: Unknown

● find(name): Search the vault for name. Basically resolve. If not found, returns Void.
For example: TheVault.BaseClass.find("Time.Clock") → Clock
“” matches TheVault.
Note: Void isn't in the Vault so you don't have to worry about find(“Void”) being ambiguous. Of
course, that creates its own set of problems.
Returns: Object | Void

● holds(class | native):
Examples:
 TheVault.BaseClass.find(Atomic) → True
 TheVault.BaseClass.find(Atomic.Lock) → False
Returns: Bool

● path(class | native): If the object is in the Vault, return its vault path.
Examples:
 TheVault.BaseClass.path(Atomic) → “TheVault.Atomic”
 TheVault.BaseClass.path("") → “TheVault.String”
Returns: String or Void

● resolve(name): Search the vault for name. If found, returns the object, otherwise, throws
NotFoundError.
For example:
 TheVault.BaseClass.resolve("Time.Clock") → Clock
 TheVault.BaseClass.resolve("Time") → NotFoundError
Throws: NotFoundError
Returns: Object

Properties
● contents: Returns the current contents of the Vault. For example: L("TheVault",

"Compiler.Compiler", "Compiler.Parser", "Compiler.Toknizer", "Import", "Test.UnitTester")
Returns: List of names

288 Vault and TheVault

Objects

Operators: None

Discussion
The Vault is somewhat like a file system for objects; it is used to hold “global” objects, that is, those
objects that are considered to be useful enough to be stored in place is visible to every other object. The
compiler will look here when it tries to resolve references. The “core” objects (such as List, String and
Compiler) are stored here. The Vault acts like a Dictionary where the key is a “directory” entry; for
convenience, the key usually has a direct mapping to the actual file system (see Objects.Import). The
“dir” method displays a listing of the objects in the Vault.

A “native” object is one that is written in C. These are created by the VM itself or by a C library.

Typically, Import is used to add things to the vault.

Why is BaseClass required to access things in the Vault?!?
Blame it on the compiler; when it sees TheVault.anything, it treats that as a reference to something in the
Vault. This is what makes code like
 Clock=TheVault.Time.Clock;
work. If it didn't work like this, the above code would have to be
 Clock=TheVault.BaseClass.resolve("Time.Clock");
which isn't any fun either. The compiler had to make a choice. Which is why “Vault” exists, so you can
have it your way.

Why TheVault and Vault?
Because using BaseClass becomes so annoying, especially when interacting with the Vault in the shell,
the Vault object exists. It is the same object as TheVault, minus the “resolve” method, so it behaves like
other objects. Thus, things like Vault.dir() work as expected. Note, however, that “Vault”, unlike
“TheVault”, is not a reserved word. “Vault” exists as a convenience object, not an essential one.

Quirks
The concept of a “directory” is a bit ambiguous, which can be useful or just confusing. Consider:
 TheVault.BaseClass.add(Compiler.Compiler,"");
 TheVault.BaseClass.dir();
will yield:

…
Compiler
Compiler
 Compiler
 Parser
Console

Now the key “Compiler” is two things: a Class and a directory that holds the compiler Classes. It is
definitely confusing but also reduces typing if you use the compiler a lot:
 Compiler.compileFile
is equivalent to
 Compiler.Compiler.compileFile
The Thread Class and the Thread.Pipe Object use the same trick to mix objects and classes. This will
work as long as the vaultPaths are not the same; if they are, the objects won't coexist.

 289

Objects

VM

Full name: [TheVault.]VM
Inherits from: Object
See also: Keywords.Class

Abstract
A Virtual Machine object, which might be a thread or fiber (created by another object) running some
code.
VM threads can be created with the launch Class and Function methods, fibers by createFiber.

Methods
● argsMatch(matchParameters): This method attempts to provide parameter pattern matching,

similar to that found in C++131 and other languages. The args-to-be-matched are vm.arglist.
Here is an example:
class Line{
 fcn intersect{
 if (vm.argsMatch(Line))

return(intersectLine(vm.pasteArgs()));
if (vm.argsMatch(Circle))

return(intersectCircle(vm.pasteArgs()));
 throw(Exception.ValueError("Line.intersect:

(%s)???".fmt(vm.pasteArgs())));
 fcn intersectLine(line) { ... }
 fcn intersectCircle(circle){ ... }
}

Parameter Matches Parameter P

None Matches only if vm.arglist is empty (ie L())

* Match anything

NullClass Any class

Class P.isInstanceOf(Class)

nullFcn Any function

fcn P.isInstanceOf(fcn)

0 Int

1 Int or Float

“” String

“name” name==P.name. Eg argsMatch(”RegExp”)

List, ROList List or ROList

other Match same type (P.isType(other))
If there are fewer matchParameters than in vm.arglist, the extras in vm.arglist are ignored. In
other words, fcn{ vm.argsMatch(0) }(1,"ignored") → True. This is different from the the
special case fcn f{ vm.argsMatch() } where f() → True and f(1) → False.

131Function/Method overloading. For example, with two function f(int x){} and f(char *s){}, f(1) and f(“foo”) call different
functions. Also multiple dispatch or multimethods.

290 VM

Objects

See also: Keywords.switch
Returns: Bool

● createFiber(f [,parameters]): Create a fiber wrapped around function f. A VM is created
and f is run in that VM. The calling VM is stalled until the fiber yields or f returns (if it returns
before it yields).
Fibers can create fibers.
To see the state of the fibers, you can use:
 println(vm.vms,vm.vms.apply(fcn(v){ v.isFiber }));
which might print something like “L(VM#4369,VM#33)L(2,0)”, which means there are two
VMs, one of which is a running fiber.
Throws: yes
Returns: The result of the first yield or f(parameters).

● kick(targetVM [,instance (or child) of Exception.HeyYou]):
Throw a HeyYou exception at a VM. This is useful if you want to kick another thread or fiber.
Notes:

● If the target isn’t running, it doesn’t take kindly to being kicked, even if it is dead.
● You can't throw at self.
● If a thread is blocked (for example, waiting for a OS operation to finish or in a driver) it

might ignore the exception until it becomes unblocked. Most Atomic objects and waits
are interruptible.

Warnings:
● If multiple threads throw exceptions at another thread or one thread throws several

exceptions at another thread, the receiving thread's catch block might catch all of them or
only one (depending on the timing). If it catches more than one, it will ignore all but one
of them. And it is entirely unknown which one that will be.

● You are expected to go out of your way to avoid using this mechanism.
Throws: ValueError, TypeError
Returns: Bool. False if VM is not excepting exceptions or already has a pending exception, True
if the exception is now pending.

● nthArg(n): Returns the nth parameter to the currently running function.
Throws: IndexError if n is out of range.
Returns: Object

● pasteArgs(offset=0): Take the parameter list of the running function and paste it into the
parameter list of the object being called. This is useful for “trampoline” functions that just want
to pass their parameters to another function. For example
 fcn f(args){ println(vm.pasteArgs()) }
 fcn{ g(1,vm.pasteArgs(),2) }
This is equivalent to vm.arglist.xplode(offset,*) without the overhead of creating a list.
Default parameters have been expanded and if parameters have changed, pasteArgs uses the
current values132.
Throws:
Returns: Void

● resume(): Restart a stalled fiber. Not thread safe!
 If self is a stalled fiber, it resumes running. The calling VM stalls until the fiber yields or exits.
Note that the VM calling resume doesn't have to be the VM that created the fiber, but it will be
the VM that stalls waiting on the fiber.

132fcn(x){ x=3; println(vm.pasteArgs()) }(1,2) → “32”

 291

Objects

Throws: AssertionError
Returns: The result of the next yield or the terminal result of the fiber

● stackTrace(): Dumps a stack trace to the Console.
Throws: AssertionError
Returns: Void

● toString(): Returns “self.name” or “DeadVM”.
Returns: String

● yield([result,...]):
If self is a running fiber, the fiber is stalled and control returns to the VM that resumed or created
it. Result is returned to the createFiber/resume call that started the fiber running.
Only the running fiber can tell itself to yield; telling a fiber to yield from another thread is an
error. There are some other restrictions to ensure that a fiber only yields at a “safe point”, one
that can be resumed. This does NOT work:
 fcn f(g){ g(1) } f(vm.yield);
because the “vm.yield” method is bound to the wrong VM. While
 fcn g(v){ v.yield(1) } vm.createFiber(fcn{ g(vm) });
does work, it is poor form because the fiber can't be reclaimed (as it is self referencing: g's
parameter list holds the fiber)133.
Throws: AssertionError if the vm/fiber can't yield.
Returns: Result, ROList, or Void (same as return)

Properties
● arglist134: Returns a copy of the list of parameters that was used to call the currently running

function. Default parameters have been expanded. If there are no parameters, a read only list
might be returned (either way, the list is empty). Since it is a copy, changing the list has no effect
on the actual parameters.
Returns: List or ROList

● isDead: Returns True if the VM is kaput. Pretty much (not isRunning).
See Also: isRunning
Returns: Bool

● isFiber: Returns the following:
0: Not a fiber
1: Is a fiber and it is stalled
2: Is a fiber and it is running
It should be obvious that vm.isFiber returns 0 or 2.
Returns: Int

● isRunning:
Returns: True if the VM is running. False means the VM has stopped and is in the process of
being garbage collected. This is THE test for VM “health”. However, a VM that that answers
“yes” may be in the process of saying “no”.
It should be obvious that vm.isRunning returns True.
See Also: isDead

133VMs are “root” objects; all root contents are marked by the garbage collector. If a fiber is stalled and not marked, it can
be reclaimed. Thus a fiber that contains a reference to itself can never be reclaimed.

134It would seem to make more sense for arglist to have been a function property (ie self.fcn.arglist) but indirect references
to arglists in dead VMs are a potential problem (circuitous but easy to do). And, yes, arglists do live in the VM, functions
just receive a reference to them.

292 VM

Objects

Returns: Bool
● isThread: Returns True if this VM is a thread. This value will remain unchanged until the VM is

reused. Be aware that the answer might change by the time you get it.
Returns: Bool

● libraries: A list of the names and authors of the libraries used by the VM.
Returns: List of Strings

● name: Returns “VM#n” where n is a positive integer. For example “VM#1”, “VM#45”. VMs are
recycled so you may see the same name arise from the ashes. No two VMs will have the same
name. A VM awaiting resurrection will return “DeadVM”.
Returns: String

● numArgs: Returns the number items in self.arglist without actually making a copy of the arglist.
Returns: Int

● numThreads: Returns the number of currently running threads. Which may be changing as you
make this call.
Returns: Int

● registers: A VM contains at least two registers: R, X and a set of zero or more dynamic
registers. This returns a list of the values in the register file (which are object instances). The
number of dynamic registers change as the program runs. R is the result register (which holds
function return values, among other things), X is the temp register and the register file holds
block local values (for example, variables created with the “reg” keyword).
Throws: AssertionError
Returns: L(R,X,reg0,…)

● regX: The X register. When the compiler creates a constructor, it stores the result of the
constructor in X and self in R as the last bit of constructor code. Thus, if you care, you can get
both the new instance and a result when creating a new instance.
Example:
 fcn eval(text){
 TheVault.Compiler.Compiler.compileText(text)
 .__constructor();
 return(vm.regX);
 }
 eval("1+2"); // compile and run "1+2", returning 3
Notes:

● If the constructor uses returnClass, this won’t be of much use.
● If the running VM is the one looking at the X register (for example, the eval function

above), you could be looking at a Heisenbug – the act of looking at regX could cause it to
change. If X isn’t making sense, you may need to look at the asm code to see if your code
is changing regX.

Throws: AssertionError
Returns: Object

● vms: No, not a VAX. This returns a list of the all the VMs running at this moment in time. By the
time you get this list, it may no longer be valid as threads can be created and may exit at any
time.
Returns: List of VM instances

● xxception: While a onExit function is running, xxception is set to the exception that caused the
onExcit function to run. True means that an uncatchable exception was thrown. Void means an
uneventful exit, no exception thrown.

 293

Objects

Returns: Void, Exception or True.

Operators
● ==: Returns True if both operands are the same [live] VM.
● !=: Returns Bool.

Discussion
A VM is an instance of a running program or code. The most obvious ones are threads. But Objects can
also create VMs to run “helper” programs; zkl programs that an Object calls from C code. A VM is an
Object just like any other, although it is more dynamic and can expire while you are looking at it. In fact,
they are very dynamic: the test suite causes hundreds of thousands of VM life cycles.

You should treat a VM instance as a “weak reference”; while the instance exists, it may not be valid. It
could be a thread or fiber that has died or is undergoing some type of transformation.

Threads

Typically, you'll see only one VM. However, there can a lot of them, depending what is running. For
example, the test suite can have over one hundred threads running; the compiler, four or more.
To find all the running threads at a point in time:
 vm.vms.filter(fcn(v){ v.isThread })
example output: L(VM#3)
It is important to note that by the time this has run, it could well be out of date.

Fibers

Fibers are basic non-preemptive threads that behave like functions, continuations, generators or
coroutines. A fiber is a VM that can be called like a function and can suspend itself, returning control,
and a result, to the calling VM. You treat fiber VMs like any other object. The is no particular reason to
use a fiber over a thread; they do, however, allow you to easily write recursive walkers (aka generators)
and avoid locking issues when used like threads. Since they are not preemptive, if you call a fiber and it
stalls, you will stall. They consume about same amount of resources as a thread135. The VM makes
extensive use of fibers to run “helper” code.

Warnings
● References to threads or fibers won't stop them from dieing. For example:

 fiber:=vm.createFiber(fcn{ vm.yield(vm) });
 fiber.resume();
fiber is now a reference to a dead VM. The VM is still a valid object but it won't do anything
useful. A reference to a stalled fiber (one that has yielded) will keep the fiber from being
recycled.

● It is a really bad idea to have more than one thread controlling fibers. Two threads calling resume
will probably crash the VM (this is difficult for the VM to protect against). It is reasonable for
one thread to manage a bunch fibers or pass a fiber amongst threads.

135Threads, being creatures of the OS, use OS resources, such as additional stack space. Which can be considerable; on my
MS Windows box, I can create about 2,000 threads before I run out of memory but 20,000 fibers are a “mere” blip (or,
more correctly, a blimp, but it works).

294 VM

Objects

● Fibers are restricted as to when they can yield. They won't yield from within a method. You'll run
into this when, for example, you try to yield inside a function called from filter/apply136, etc.

Exceptions
● If a fiber throws an exception (and doesn't catch it), the exception propagates to the calling VM.

The fiber dies.
● Throwing an exception at a stalled fiber will delay the handling of the exception until the fiber is

resumed.

Creation
Fibers are created with the “createFiber” method, which creates a fiber running a function. The “yield”
and “resume” methods stall and resume a fiber.

Results
Yield causes a fiber to stall and return a value but it is createFiber and resume that actually see the value.

● r=vm.createFiber(f);
R is the result returned by the first yield or the result of f(), if f returns (or exits) rather than
yields. One handy thing a fiber can do is yield its vm when starting so that it can be controlled:
 fiber=vm.createFiber(f);
 fcn f{ vm.yield(vm); resumesHere(); }

● r=fiber.resume();
Once a stalled fiber has restarted, resume will get the result of the next yield or return value (if
the fiber terminates).

● If the fiber throws an exception and doesn't catch it, the exception will kill the fiber and fly past
by resume or createFiber (ie they won't get a result)137.

Generator Example 138

One of the clearest reasons to use a fiber is the ease in which you write can certain types of walkers; if
the walker is best written recursively, it is an exercise in masochism to try and write a “flat” version.
Tree traversal is a prime example. Generators are used to return values from the middle of the recursive
walker function.
Here is a simple binary tree structure:
class Node{ // a three element list would also work nicely
 var left,right,value;
 fcn init(value){ self.value=value; }
}
class Tree{
 var root;

136Which are List methods that create a fiber to run the function.
137Assuming that createFiber or resume aren't wrapped in try
138Another example would be an random number generator

 295

Objects

 fcn add(value){
 if(not root){ root=Node(value); return(self); }
 fcn(node,value){
 if(not node) return(Node(value));
 if(value!=node.value){ // don't add duplicate values
 if(value<node.value)
 node.left =self.fcn(node.left, value);
 else node.right=self.fcn(node.right,value);
 }
 node
 }(root,value);
 return(self);
 }
 fcn traverseInOrder(node=root){
 if(node){
 self.fcn(node.left);
 println(node.value);
 self.fcn(node.right);
 }
 }
 fcn walker{ CarpetCrawler(self) }
} // end Tree
Now build a tree:
tree:=Tree().add("D").add("A").add("C").add("B");
 C
 / \
 A D
 / \
 B
 / \
tree.traverseInOrder();
A
B
C
D
Notice how simple it is to write an in order first traversal. But how can we create a walker so that it is
just as easy to traverse the tree with, for example, a foreach loop? You could use a callback to spit out
nodes from inside the recursion but that is awkward and removing the recursion is even worse. Instead,
we can use a generator to suspend the traversal, return a node and then resume traversing. We implement
generators with fibers.
We already have our walker template in place, now let's implement it.
class CarpetCrawler{
 fcn init(tree){
 var [const] fiber=vm.createFiber(start,tree.root);
 returnClass(Walker.tweak(fiber.resume));
 }
 fcn start(root){ // running in the fiber
 vm.yield(vm); // stall until Walker wants a node
 walkNode(root); // yield the first node
 return(Void.Stop); // signal all done
 }

296 VM

Objects

 fcn [private] walkNode(node){ // the fiber
 if(node){
 self.fcn(node.left); // recurse left branch
 fiber.yield(node.value); // yield a node's value and stall
 self.fcn(node.right); // recurse right branch
 }
 }
} // end CarpetCrawler
This isn't as pleasant as it should be but we have to do some prep work before we can actually traverse.
But notice that walkNode (which actually does the traversal) is basically identical to traverseInOrder.
Here it is in use:
foreach node in (tree){ print(node," "); }
println();
→ A B C D
And this code knows nothing about the Tree internals, which is how it should be.
Another use:
 tree.walker().walk().println(); → L("A","B","C","D")
OK, how does this magic work? We'll look at two levels; the generator point of view and the
implementation point of view. Generators/fibers know about yield; the code runs until it has a result and
then it yields that result to somebody else and stalls. When that somebody is ready for more, it tells the
generator to resume and produce another result. When there are no more results to yield, the generator
returns Void.Stop to signal that. The generator is wrapped by a Walker139, who will call fiber.resume
each time it wants a value. And the Walker provides the support that foreach needs.
A simple idea, and walkNode shows that, in the cold harsh light of reality, it can be that simple.
walkNode produces a result and yields it, when there are no more results, it returns to start, which in
turn tells the Walker to stop.

Under the covers, there is lots and lots of state that has to be maintained but that is not our problem, the
VM does the heavy lifting.

Generators are useful enough to have been added as the Utils.Generator class. Using that we can make
the following changes to Tree:
class Tree{
 …
 fcn walker{ Utils.Generator(walk,root); }
 fcn walk(node){
 if(node){
 self.fcn(node.left);
 vm.yield(node.value);
 self.fcn(node.right);
 }
 }
}

139We use a Walker template (the default) of zero to infinity. It passes resume an int, which resume ignores.

 297

Objects

Void

Full name: [TheVault.]Void
Inherits from: Object

Abstract
The Void object is used to indicate an absence of anything, but, since it is an object like any other, that is
a convention. It is analogous to C’s NULL, Python’s None or LISP’s nil. There is only one Void object.

Methods
● create(): Returns Void.
● toBool(): Returns False
● toString(): Returns “Void”

Properties:
The following values are sentinels for state machines such as pump (see Notes on Pump at the start of
this chapter).

● Again, Drop, Filter, Read, Recurse, Skip, Stop, Void, Write, Xplode
These markers identical to Void and are difficult differentiate outside of a method. The toString method
is one of those. User defined code won't find these of much use outside of passing them to methods.

Operators
● == : Returns False unless the other operand is also Void, in which case it returns True.

(Void==y) is equivalent to (y.isType(Void)).
● != : Opposite of ==.

The operators == and != do not try to do a type conversion of the second operand, they just check to see
if it is Void or not Void. Thus, operand order can be important:

● if (Void) is the same as if (False)
● if (Void == False) is the same as if (False)
● if (False == Void) is equivalent if (not Void) is equivalent to if (True), which is what

you would expect in this case but is not in this case:
 fcn f{
 if(error) return Void;
 return(result.toBool());
 }
 if (not f()) println("Error");
which can generate erroneous results (because when f returns Void on some errors, if(not f())
becomes if(not Void)). What you probably want is:
 if (Void==f()) println("Error");

Discussion

298 Void

Objects

Walker

Full name: [TheVault]Walker
Inherits from: Object
Sell Also: Keywords.range, Objects.Utils.wap

Abstract
Walkers are the zkl iterator. They walk over sequences, streams, do stepwise iteration, and can be
extended to iterate over just about anything. They can also “moon walk”: look ahead and push back
objects. They can be infinite in length.

Most objects implement a Walker. For example, Strings. "foo".walker() returns a Walker that returns
“f”, “o”, “o”.

[a..b], [a .. b] and [a..b,step] are syntactic sugar for range Walkers.

Note: Walker() is syntactic sugar for Walker.zero().

Methods
Notes:
If there is a count, that is the number of results that will be returned.
If there not enough items to fulfill a request, the result will be short. Eg T(1).walk(10) → L(1).

● apply(f [,paramters]): Walks, applying a transform and collecting the results.
See also: pump
Returns: List.

● chain(walkables): Returns a Walker that cycles through the walkables as if they were one
Walker.
For example: Walker.chain("foo",2,["a".."c"]).walk() →
 L("f","o","o",0,1,"a","b","c")
[1..3].chain([7..10,2]).walk() → L(1,2,3,7,9)
Returns: Walker

● chunk(chunkSize,sink=List): Returns a Walker that consumes source in chunks.
Examples:
● ""abcdefghij".walker().chunk(3,String).walk() →

L("abc","def","ghi","j")
● foreach x,y,z in ([1..9].chunk(3)){}

x,y,z → (1,2,3), (4,5,6), (7,8,9)
● "abcdef".walker().chunk(2,String).chunk(2).walk() →

L(L("ab","cd"),L("ef"))
Returns: Walker

● cproduct(walkables): A lazy cross product.
Walker.cproduct(["a".."c"],2).walk() →
L(L("a",0),L("a",1),
 L("b",0),L("b",1),
 L("c",0),L("c",1))
Which is the same as foreach a,b in (["a".."c"],2){}

If you use an infinite list, make it the first parameter.
Returns: Walker

 299

Objects

● create(): Returns a Walker that counts from zero to zero.
● create(transform[,terminus[,peeker]]):

Walker.create(…) (aka Walker(…)) tweaks Walker.zero() (don’t pass parameters to the
transform).
Another useful walker to transform is (0).walker(*) (ie walk from zero to infinity (and
beyond) and pass those numbers to the transform).
See tweak.
Returns: Walker

● cycle(): Returns a Walker that cycles through its contents.
For example: [1..3].cycle().walk(6) → L(1,2,3,1,2,3)
Returns: new Walker, modifies self

● cycle(a,b,c): Returns a Walker that cycles through the parameter list.
For example: Walker.cycle(1,2,3).walk(6) → L(1,2,3,1,2,3)
If there only one parameter (eg cycle("abc")), a.walker().cycle() is returned.
Thus:
 Walker.cycle("abc").walk(4) → L("a","b","c","a")
 Walker.cycle(T(1,2,3)).walk(4) → L(1,2,3,1)
 Walker.cycle(2).walk(4) → L(0,1,0,1)
 Walker.cycle(T(2)).walk(4) → L(2,2,2,2)
 Walker.cycle(2,Void.Skip).walk(4)→ L(2,2,2,2)
Returns: new Walker

● drop(n): The same as do(n){ self.next() } return(self);.
drop(*) drops everything, drop() and drop(-1) are no-ops.
Throws: TheEnd
Returns: self

● filter([count,] f=Void [,static args]): Send each item through f and, if f returns True,
add the item to a list. If f is Void (or doesn't exist), the identity function is used (f(x) → x).
If count, filter attempts to return that many results.
Examples:

● To generate a list of even multiples of 3:
[0..12,3].filter(fcn(n){ n.isEven }) → L(0,6,12)

● To gather all lines in a file that have “foo” in them:
File("foo.txt").walker().filter(
 fcn(line){ Void!=line.find("foo") })

● If you wish to create a lazy [infinite] filter, you can use something like
fltr:=[0..].filter.fp1(f). Then you can call fltr(5) to get the next 5 results.

Retruns: List or what aggregate was set to
● filter(Walker,f=Void [,static args]): This form, for all filters, creates a lazy filter.

Returns: Walker
● filter1([count,] f=Void [,static args]): Filter until an item passes.

If count, it is ignored.
Returns: Item that passed or False.

● filter22([count,] f=Void [,static args]): Filter into two lists.
If count, filter22 attempts to return that many results.
Returns: List(items that passed, the ones that didn't)

● _next(): Returns True if could read an item. The item is in .value.
Returns: Bool

300 Walker

Objects

● next(): Returns the next item in the sequence. You can call this anytime to walk on and the
Walker will track.
Throws: TheEnd if try to read past the end of the sequence (eg T.walker().next()) or there is
nothing to return (eg
 T(1,2,3).walker().tweak(fcn{ Void.Stop }).next()).
If you don't like that behavior, use _next, pump or tweak the walker:
walker.tweak(Void,Void) will return Void (forever) instead of throwing TheEnd.
Returns: Object

● pump([n,] sink [,action, action, …]): Run the action(s) for each item in the walker (the
result of an action is passed as the parameter to the next action).
Examples:

● Take the length of each item in a list:
L("1","22","333").walker().pump(List,"len") → L(1,2,3)

● Calculate the first 3 factorials from a list:
L(3,5,7,10,11).walker()
 .pump(3,List,fcn(x){ x and x*self.fcn(x-1) or 1 })
→ L(6,120,5040)

● To read a file into a list, stripping leading and trailing white space from each line:
File("foo.txt").walker().pump(List,"strip")

See also: Notes on the pump method at the start of this chapter.
Throws: If an action does. Does not throw TheEnd (which walk() does).
Returns: List (or what aggregate was set to) or result of last action

● read(): The same as next.
● reduce([n,] f,initialValue): The same as List.reduce with an optional count.

Six factorial: [2..6].reduce('*,1) → 720
Returns: Object

● reset(): Attempt to reset self so the next read will be the first item in the source.
Returns: self

● sink(sink): Set the type of data that apply, filter, pump and walk return.
T or L: (ROList or List): A list of results
String: String
Data: Data as Data, use sink(Data,String) for Data of strings.
Void: Don't aggregate, just save last result.
For example, URL decode140can be written as:
 fcn urlDecode(text){
 w:=text.walker();
 w.tweak(fcn(c,w){
 if(c=="%") w.walk(2).toInt(16).toChar()
 else c
 }.fp1(w))
 .sink(String).walk();
 }
 urlDecode("http%3A%2F%2Ffoo.com%2Fbar") → “http://foo.com/bar”
Throws: ValueError if invalid sink
Returns: self

● tweak(transform[,terminus[,peeker]]): Modify an existing Walker. If any one of the
parameters is Void.Void (or Void for transform or peeker), it is ignored.

140http://en.wikipedia.org/wiki/Url_encode

 301

http://en.wikipedia.org/wiki/Url_encode
http://en.wikipedia.org/wiki/Url_encode

Objects

● Transform: A function (or Partial) of the form fcn(i) where i is what the walker would
normally return.
Returning Void.Skip will skip that value, Void.Stop is the same as hitting the end of the
stream, return(Void.Stop,v) ends the stream with v.
Void.Read is the same as Void.skip, return(Void.Read,n) reads n more items and re-
calls the tweak with them as parameters.
return(Void.Again,x) is retry, passing x as the second parameter.
Note: If transform throws, it is not caught. For eample,
Walker([1..20].next).walk() throws theEnd because [1..20] throws under Walker.

● Terminus: What to return when the end of the stream is reached. If you need an infinite
stream where Void is always returned when the stream is exhausted, use Void.
Transform is not called for these values.
If terminus is a Fcn, it is called (with self as the parameter) and that result is returned. If
the Fcn returns Void.Again, an attempt is made to read another value from the source
(you probably want to call reset).
You can use .atEnd to check for end of stream.

● Peeker: A function (or Partial) of the form fcn(i,EoS) where i is the transformed item
and EoS is False. If EoS (end of stream) is True, i is Void.
This is for the case where peek needs to return values that differ from next (which won't
return peeked values).

You can tweak a tweaked walker. When next is called, the first walker gets a value, transforms it
and hands it to the next walker to be transformed and so on. The peeker is ignored until the most
recent walker. Note that the base Walker is consumed.

Examples:
 Two enumerators:
 fcn f(i,n){ return(n,i) }
 T("a","b","c").walker().tweak(f).walk()
 ["a".."c"].tweak(f).walk()
 → L(L(0,”a”), L(1,”b”), L(2,”c”))
 The second is interesting because it shows tweaking a tweaked walker.
 Tweaked times 2:
 w1:="abc".walker();
 w2:=w1.tweak(fcn(c){ return(c,c.toAsc()) });
 w2.walk() → L(L("a",97),L("b",98),L("c",99))
 w1.walk() → TheEnd as w2 consumed w1
Returns: self or a new Walker

● walk([n]): Walk self and returns a list of the results.
Examples:
 (0).walker(5).walk()=[0..4].walk() → L(0,1,2,3,4)
 "foobar".walker().walk(3) → L("f","o","o")
 "f".walker().walk(3) → L("f")
Throws: TheEnd, same as next. Pump doesn't throw.
Returns: List

● walker(): Returns self. This is so that things like
 foreach x in (foo.walker())
work.
Returns: self (Walker)

302 Walker

Objects

● zero(): Creates a Walker that always returns zero. More importantly, it doesn’t pass any
parameters to its transforms (in the case of Walker.zero.tweak).
Walker() is syntactic sugar for Walker.zero().
Walker(f) is syntactic sugar for Walker.zero.tweak(f).
Returns: Walker

● zip(sequence, ...): A lazy Utils.Helpers.zip.
[1..].zip("This is a test".split(" ")).walk() →
 L(L(1,"This"),L(2,"is"),L(3,"a"),L(4,"test"))
A list of (n,fib(n)):
 var nfib=[1..].zip(
 fcn(ab){ ab.append(ab.sum(0.0)).pop(0) }.fp(L(1,1)))
nfib.drop(3); nfib.walk(5) → L(L(4,3),L(5,5),L(6,8),L(7,13),L(8,21))
Enumeration:
foreach n,s in ([1..].zip("This is a test".split()))
 { "%2d: %s".fmt(n,s).println(); }
→ 1: This
 2: is
 3: a
 4: test
Walker.zip([0..],(100).random.fp(109)).walk(5)
→ L(L(0,105),L(1,108),L(2,107),L(3,107),L(4,100))
Returns: Walker

● zipWith(f,sequence, ...): A lazy Utils.zipWith.
[1..].zipWith('+,[10..]).walk(5) → L(11,13,15,17,19)
Returns: Walker

Look Ahead
● peek(): Returns the next item in the walk but doesn’t remove it. Multiple peeks will return the

same value.
Throws: TheEnd
Returns: Object

● peekN(n): Looks ahead n items and returns that item but doesn’t remove it or change the walk
order.
Throws: TheEnd
Returns: Object

● push(x,...): Sticks x at the front of the walk such the next call to next or peek will return it.
Returns: self.

Note: Look ahead affects the n and value properties.

Properties
● atEnd: True if the last value has been read. If haven't read, returns True, even if there isn't

anything to read.
w:=L().walker(); w.atEnd → False, w._next(); w.atEnd → True
Returns: Bool

● idx: Index into the source stream. It starts at zero, remains at zero for the first next() and
increments thereafter (ie it is the index of the current object).
Returns: Int

 303

Objects

● n: The number of objects produced. If look ahead is used, n will be out of sync with the
underling stream (idx).
Returns: Int

● value: The current value. Void before the first read.
Returns: Object|Void

Variables
● _nameWalker: This isn't a Walker variable; it is created by foreach loops so you can access the

loop walker. For example:
 foreach c in ("foo"){
 println("character %d is %s".fmt(__cWalker.n,c));
 }
Prints:
character 0 is f
character 1 is o
character 2 is o

Discussion
Walkers are the zkl iterators and maintain state as they walk. If you want to access a object in a linear
fashion, Walkers will do it. Foreach is implemented with Walkers. Many objects support walkers so you
can loop over them “out of the box”. In addition, it is easy to implement walker functionality for your
favorite class or code.
Filter/pump/reduce also iterate over collections but do it in one shot and have limited access to the
lexical environment. Walkers offer more flexibility and “iterative” style.

In Use
Walkers are the object foreach uses for iteration, which is very convenient as most objects have walkers
(if iteration is possible). Examples:

● To iterate over each character in a String: foreach c in ("foo"){ … } will walk “f”, “o” and
“o”. Which is same result as "foo".walker().walk().

● To iterate over every line in a text file:
foreach line in (File("text.txt")){ … }

Looping Without foreach
While a common use of a walker is [invisibly] in a foreach loop, they are also very useful when you
want to apply a transform to a sequence (defined by its walker). The filter, next, pump, reduce and walk
functions can all do this.

next
Next allows you “unroll” a foreach loop and give you a finer grained control of looping.
For example, the following reads from a file, skipping over lines until it sees a line with “GO!” in it. It
then prints the rest of the file.
 walker=File("test.txt").walker();
 while(Void==walker.next().find("GO!")){} // or filter1
 // instead of: foreach line in (walker){ print(line); }
 // use
 walker.pump(Console.print); // print the rest of the file

304 Walker

Objects

filter
The search in the above example could also be written as:
 walker.filter1(fcn(line){ Void!=line.find("GO!") });

walk
Walk can be used to generate a range of numbers:
 [0..12,3].walk() → L(0,3,6,9,12)
If you have an infinite sequence, you can walk parts of it:
 var s=[0..*]; s.walk(5); → L(0,1,2,3,4)
 s.walk(3); → L(5,6,7)

pump, reduce
The pump and reduce functions are basically loops. Say you want to print a file with line numbers. Here
is a simple function that does that:
File("foo.zkl").walker().pump(Void,
 fcn(line,rn){ print("%4d: %s".fmt(rn.inc(),line)) }.fp1(Ref(1)));
Running this on the preceding file produces:
 1: File("foo.zkl").walker().pump(Void,
 2: fcn(line,rn){ print("%4d: %s".fmt(rn.inc(),line)) }.fp1(Ref(1)));
It would be simpler to use a global variable for the line count, this method avoids external state.

And, of course, you can change “File” to any object that supports a walker and get a numbered list. Let's
show another way to avoid global state:
 Utils.Helpers.fcns.walker().reduce(
 fcn(n,line){ println("%d: %s".fmt(n,line)); n+1 },1);
1: Fcn(__constructor)
2: Fcn(objectDir)
3: Fcn(commaize)
…
And finally, zip is really good for things like this.

Creating new Walkers: the tweak
● To repeat 5 forever: (0).walker(*).tweak(fcn{5}) or Walker(fcn{5})
● Methods can work tweak as well as functions:

(0).walker(*).tweak("").walk(10) → “0”, ”1”, ...
(0).walker(*).tweak(1.0).walk(10)→ 1.0, 2.0, …
(5).walker(*).tweak(T).walk(10) → L(5), L(6), …

● Consider the Col l atz conjecture141, which is that the sequence

f(x) = { n /2 if n is even
3 n+1if n is odd for n>0 will always end in 1 [and is finite]. How would we write a

walker that generates these sequences? First, code the formula:
fcn collatz(n,cs=L()){ cs.append(n);
 if(n==1) return(cs); // stop the recursion
 if(n.isEven) return(self.fcn(n/2,cs));
 return(self.fcn(3*n+1,cs)); // odd
}

141http://en.wikipedia.org/wiki/Collatz_sequences

 305

http://en.wikipedia.org/wiki/Collatz_sequences
http://en.wikipedia.org/wiki/Collatz_sequences
http://en.wikipedia.org/wiki/Collatz_sequences
http://en.wikipedia.org/wiki/Collatz_sequences

Objects

which is tail recursion all the way down (a while loop would work just as well). Note that we
assume the conjecture is true, otherwise we would have a run away program (and a lot of fame
for disproving the conjecture).
collatz(10) → L(10,5,16,8,4,2,1)

Now for the walker: var cs=[1..].tweak(collatz). This is an infinite sequence that
generates the Collatz sequences for all natural numbers. How about the first four?
cs.walk(4) → L(L(1), L(2,1), L(3,10,5,16,8,4,2,1), L(4,2,1))
The fifth? cs.walk(1) → L(L(5,16,8,4,2,1))
The tenth? cs.pump(5,Void) → L(10,5,16,8,4,2,1)

Now, for extra credit: Of the first 100 sequences, how many are longer than 25?
[1..100].tweak(collatz)
 .reduce(fcn(n,cs){ if(cs.len()>25) n+1 else n },0) → 32142

Creating a Walker for a Class
If a class can be thought of in a “linear” manner, it is often useful to have a walker attached to it. For this
example, we'll create a deck of cards, which is sequence of fifty two individual cards:
class Deck{
 var deck;
 fcn init{ deck=[1..52].walk().copy(); shuffle(); }
 fcn shuffle{ deck.shuffle() }
 fcn __sGet(n){ return(deck[n]); }
 // Several possibilities here: deck.walker() or:
 fcn walker{ return(Utils.wap(__sGet)); }
}
Now, when we create a new deck of cards: deck=Deck() we get 52 shuffled cards. On to walkers; the
__sGet function implements Deck[n], which also works as a Walker access method. So, in this case, the
walker function is easy, it is small wrapper on __sGet (to convert IndexError exceptions to
return(Void.Stop)). Even easier would be to use deck.walker(). In both cases, calling
deck.walker().next() is equivalent to both deck[n] and deck.__sGet(n). And,
 foreach card in (deck){ println(card); }
is the same as calling deck.walker().next() 52 times, at which point __sGet throws an IndexError
and stops the walker.

What if we wanted the walker to deal five card hands instead? And, we want to keep dealing until the
deck is empty. In this case, the deck needs to store some state because a Walker won't. This chunk of
code will do the trick:
var n=0;
fcn dealHand(numCards=5){
 if(n + numCards >52) return(Void.Stop);
 hand:=deck[n,numCards]; n+=numCards;
 return(hand);
}
fcn walker{ return(Walker(dealHand.fp(5))) }

142Also [1..100].pump(List,collatz,"len").filter('>(25)).len()

306 Walker

Objects

In this case it is important that the walker function is NOT passed the index, so we hardcode the
parameter in the call to dealHand. Now, to deal the entire deck in hands of five cards, we use the same
foreach loop as above and change “card” to “hand”:
 foreach hand in (Deck()){ println(hand); }
This will result in something like this:
 L(26,40,34,4,27)
 L(32,35,33,14,44)
 …
After 50 cards are dealt, there is no longer enough cards to make a complete hand, so the loop stops.

Inheriting From Walker
The short version is you can't. But you can fake it. The miserable part is creating a method “shadow”
layer.
 class C{
 var [const mixin=Walker] walker=?.walker().tweak(?);
 var [const]
 next=walker.next,
 peek=walker.peek,
 … // as many Walker methods as you need
Then C.next() becomes C.walker.next().
We want C.walker to have a mixin value so that if we make a typo (eg peek=walker.peak) the
compiler will point out that Walker doesn't contain a “peak”.

 307

Appendix A: zkl Grammar

Appendix A: zkl Grammar

Appendix A: zkl Grammar

Ah yes, the dreaded Grammar. Watch the eyes start to glaze over, like the
goo on a hot-out-of-the-oven Krispy Krème.
-- Zander Kale

The following grammar is quite loose, it is not formal nor complete; it is intended to be a “how to” guide
to combining elements into a program. Many things are undefined or incompletely defined here, look for
complete definitions in the relevant sections of the manual.

Fonts: keyword, code literals, defined somewhere in here, concept definition

Concepts

program := block (the enclosing brackets are usually implicit)

object := The turtle that the rest of the world resides on. A virtual concept, as only instances of objects
exist.

instance := An instance of a object. Examples: number, string, class.
instance := class | fcn | method | …
instance := instance([parameters]); Instance creation: call the objects “create” method or creates a new
copy of a class and call the constructor and init functions.
instance := object name (such as List, L, Atomic, etc)

attributes := [attribute-name [,name …]] Attributes are placed between a type and name and apply to
all the following names.

● For example: var [const] v;
● A comma between attributes is optional; var [private,const] is the same as

var [private const].

block := { block | expression | keyword | object | assignment | listAssigment | mathSet }

expression := stuff | (stuff) | (stuff).dataRef [more stuff]
stuff := instance | if | dataRef | try | assignment | mathSet | call | math | logic | throw | listAssigment |
number | string | switch | fcn | : | (|)

308

Appendix A: zkl Grammar

● A something can be forced/cast to an expression by enclosing something in ()s. For example,
if(x) y; isn't an expression143 but (if(x) y;) is.

● (stuff1)(stuff2) should evaluate to a call to stuff1 with parameters stuff2 but doesn't.
● (stuff1)space(stuff2) is the same as (stuff1);(stuff2).
● ((stuff1)space(stuff2)) doesn't work.

control := (if | dataRef | try | assignment | mathSet | call | math | logic | control | switch | (|) | :)
● A mini (expression)
● if((sideEffects) (control)) should work but doesn't.

call := fcn | class | method | instance | constName([parameter [, parameter …]]) terminator
● No space between object and (
● Any object that has a create method (and most do) can be called, to create a new instance or run

the instance.
parameter := if | dataRef | assignment | mathSet | call | math | logic | switch | try | (|) | : | fcn |
classDefinition

● A mini expression plus functions and classes
● f((sideEffects) (arg)) should work but doesn't.

callable := Any instance that is referenced by a call.

name := [0-9a-zA-Z_]+ No more than 80 characters.
● It is a bad idea to use a single “_” as a name, as it is often used as a “replace me” symbol.
● The compiler will use two leading underscores and a trailing “#” for “private” symbols (eg

“__fcn#1”).

Class := The Class object, a virtual concept. A container for variables and functions.
class := An instance of a Class
class := class([parameters]). Class creation: create a copy and call the class constructor and init
functions (in that order). This can be overridden in various ways.

● class {…}(x) both defines and creates a new instance of the class.
● class {…}.M defines a class and resolves M against that class.

RootClass := The class that encloses all classes (except itself), eg a source code file.
RunMeClass := A class with a runMe function, which overrides class creation.

comment := # rest of line ignored
comment := // rest of line ignored
comment := /* comment */, can be nested: /* /* */ */
comment := #if 0|1|name \n comment \n #endif, can be nested, see below
comment := #ifdef name → #if 1 if name has been defined, else #if 0
comment := #define name 0|1 For use with #ifdef
comment := #fcn name { body } For use with #tokenize.
comment := #text name text For use with #tokenize

143Yes, this contradicts stuff. What happens is that single a object doesn't (usually) need the expression wrapper so the
wrapper is thrown away when parsing.

 309

Appendix A: zkl Grammar

comment := #tokenize name|f|f(parameters) Evaluate name or function and tokenize the result as a
string (as if it were part of the source at that point).
#cmd comments can't be proceeded by anything but space, otherwise they are treated as a comment.

Delimiter := ; , : () { } = ! + - * / % < > " # whitespace newline

dataRef := Data Reference. A data description. Data is any object.
dataRef := root.next.next...
dataRef := dataRef2 | dataRef3
dataRef2 := variableName | constantName terminator
dateRef2 := instance.instance | instance.dataRef2 terminator
dataRef2 := instance.property terminator
dataRef2 := dataRef2([parameters]) terminator
dataRef2 := dataRef.dataRef2 terminator
dataRef3 := (stuff).dataRef2 | (stuff)(parameters)[.dataRef2] terminator

● Whitespace (including newline) is OK in front of a dot. Not OK after a dot. For example:
foo.bar is the same as foo .bar

assignment := variable = fcnDefinition | classDefinition | expression | block terminator
multiple assignment := variable = variable … assignment
list assignment := variable, variable [, …] = expression terminator
list assignment := variable, variable [, …] := expression terminator

● Expression must evaluate to an object that supports [] (List being the most popular).
● The destinations must exist (as registers, variables or some combination), unless it is “_”.
● If := is used, registers are created (if they don't exist in the enclosing block).
● If “_” is one of the destinations, it is thrown away.

= := reg/var = expression. See assignment. The destination must be an existing variable or register
(although it may be defined after the assignment).
:= := reg := expression

● := is assignment and is the same as = except that it is restricted to registers. If reg doesn't exist, it
is created in this block. x:=5; acts like reg x:=5; If reg does exist, := is the same as = (reg r;
r:=5; is the same as reg r=5; or reg r; r=5;).

● r1:=r2:=e; is the same as r1:=e; r2:=e; (e evaluated only once).
● R1:= v= r2:=e is the same as r1:=e; v=e; r2:=e;
● List assignment: r1,r2,_:=e; creates/reuses registers r1, r2 and ignores e[2].

fcn := A function object, a code container. Often contained in a class. A static function can be homeless.
All functions are first class objects.
lambda := fcn { … }, an anonymous function

● fcn {…}(x) both defines and calls the function.
● fcn {…}.M defines a function and resolves M against that function.

method := The object equivalent of a function.
property := Passive read-only data attached to a object, roughly equivalent to a read-only class variable.

310 Appendix A: zkl Grammar

Appendix A: zkl Grammar

number := integer | 0x[0-9a-zA-Z]+ | float (123.0 | 1.23 | 0.123 | 1eN | 1EN)
string := “text” | “one” “two” … Adjacent string constants are concatenated.

“\\ \b \f \n \r \t” convert to backslash, backspace, formfeed, newline, return, tab
“\xHH” converts two hex digits into one ASCII character.
“\uHHHH” converts a four [hex] digit Unicode character to a two to three byte UTF-8 character.

string := 0' sentinel text sentinel Raw string. Examples: 0'|text|, 0'”text”

terminator := ; | { | }

logic := and | or | not

mathSet := object op= expression terminator
● a += 1 → a = a+1
● The object has to be a singleton, a.b += 1 is illegal.

math := [-] object [op math]

op := + | - | * | / | %

[] := dataref[…] → dataref.__sGet(…)
 dataref[…]=x → dataref.__sSet(x,…)

Keywords

keyword : =
AKA | Attributes | break | catch | class | const | continue | critical | _debug_ | do | fcn |
foreach | if | include | onExit | onExitBlock | reg | return | returnClass | self | switch |
throw | try | var | while

class := class [attributes] [name][(parent(s))] block
attributes := noChildren | private | public | static

● A static class never has more than one instance (the reference or Eve instance).
● Nobody can inherit from a noChildren class.
● A private class is not visible outside of the file it is defined in (ie is only source code can see it).

It can be seen with reflection.

: (compose) := expression with one or more colons in it.
Compose works like so: Given an expression E = E1:E2:...:En and pseudo variable X, the result of the
composition is X = E1; X = E2(X); … X = En(X);
The position of X in En is marked by a underscore. En>1 has the following constraints:

● It must have a call (eg function or method). Unless:
● The only time _ isn't a parameter is when assigned (:(x=_)) or :(_).name.
● Can't be too complex (whatever that means).

See Keywords.: (compose)

const := Parse time constant, must evaluate to a “simple” constant

 311

Appendix A: zkl Grammar

const := const name = expression | fcnDefinition | block
const := const nameSpace { const }

● Blocks and expressions are evaluated at parse time (after tokenizing and before compilation), as
are calls to const functions

False := A boolean value. There is only one.

fcn := fcn [attributes] [name][(prototype)] block
● Define an instance of a Function object.

prototype := name | name=parameter …
attributes := private | public

● A private function will not be visible when in a class (but can be found with reflection).
● A static function is one that doesn't reference any instance data. The compiler determines this

attribute.

if := if(control) expression terminator
if := if(control) block
if := if … else expression | block [terminator]
if := if … else if(control) expression | block [else if …]
if := if … else if … else …

● If an if is part of an expression, such as 5 + if(a<b) b-a else a-b, you will often have to
terminate both the if and the expression, depending where the if falls in the expression.
5 + if(a<b) b-a else a-b;; a+b
5 + if(a<b) b-a else {a-b}; a+b

switch := switch(control) block
switch := switch(control) { case(…) block … else defaultBlock }
switch := switch(control) { case(…) [fallthrough] block … }

loop := while (control) block [fallthrough block]
loop := do block while(control)
loop := do(n) block

● block can contain break and/or continue
loop := foreach n in (object) block [fallthrough block]
loop := foreach a,b,c in (x) block [fallthrough block]
loop := foreach a,b,c in (x,y,z) block

● n is is the name of the control register and is created local to block.
● Object needs to have a function or method (named walk) that returns a Walker, which most

objects do (lists, files, strings, numbers, etc). Since all Walkers have a walk function (which
returns the Walker), you can explicitly create a Walker.

● “__nWalker” is a register created for access to the walker.
● List assignment works: foreach a,b,c in (…)
● A cascading foreach (foreach a,b,c in (x,y,z)) is the same as

foreach a in (x){ foreach b in (y){ foreach c in (z)
 { block }}}

return := Exit fcn with value. Optional (fcn result is then the result of the last calculation).

312 Appendix A: zkl Grammar

Appendix A: zkl Grammar

return() | return(value) | return(value, value, …)
return() → return(Void)
return(value, value, …) → return(List(value, value, …))
()'s are required and no space between return and (

returnClass := returnClass(object)
● The same as return except that returnClass can be used in a constructor or init function. One, and

only one, parameter is required. Of course, that object can be a list.

try := try block catch block [else block]
try := try block catch block catch block … [fallthrough block]
catch := catch | catch(exceptionName [,name ...])
catch := catch(+trace, -trace) | catch(name,+trace) | catch(+trace,name)

critical := critical block
critical := critical(lockName) block
critical := critical(lockName, acquireName, releaseName) block

● Restrict execution of block to a single thread. A lock is allocated if need be, otherwise, lockName
is the name of a var that holds a locking object (such as Atomic.Lock or Atomic.WriteLock).

critical := critical(object, name1, name2) block
● Expand to object.name1(); block object.name2();

No locking or thread safeing is done.

onExit := onExit(f [,parameters]) ≈ Deferred.once(f,parameters)
● When the enclosing function returns, run exit code, equivalent to a “finally” block for a function.

The code is always run.
onExitBlock := onExitBlock(f [,parameters])

● When the enclosing block exits, run exit code, equivalent to a “finally” block for a block. The
code is always run.

Tailcalls can change when you think the exit code will run.

reg := A var in the current scope (block) and are not part of the instance. See :=.

True := A boolean value. There is only one.

var := var [attributes] name
var := var name [, name ...]
var := var name = value …
var := var name = (expression) ...
var := var name = fcn block ...
var := var name = class block ...
attributes := const | mixin[= class or Vault object] | private | protected | proxy, separated by
commas or spaces.

● Constant variables can only be set during declaration.
For example: var [const] v=5;

● var [mixin] m=List; is the same as var [mixin=L] m; This allows mixin checking to used
where the type can't be determined at compile time: var [mixin=Op] op=Op("+");

 313

Appendix A: zkl Grammar

Void := An object that doesn't do much. Like a nil or null, only more so. There is only one.

Comments

There are three types of comment: to end of line, block and a combination of the two. Comment
characters in strings are ignored and the characters that start a comment must be preceded by white
space (or the start of a line or other delimiter). Comments are recognized by the tokenizer and never
reach the parse stage.

● C++ “//” ignore to end of line type: // text
● Shell “#” ignore to end of line type: # text
● C type “/* */” block type: /* text */

Text can span multiple lines. Single line comments are active and can preempt the closing
comment /* // */ and /* # */ are errors but /* // */ two
line comment */ is OK. Strings are also active so /* "*/” */ is valid as is /* "//” */. The
“*/” does not need to be preceded by white space (/**/, /***********/ and /*foo*/ are
valid).
Block comments can be nested.
The text in a block comment is tokenized so it must be syntactically valid (or just enough so that
the tokenizer can recognize the end of the comment).

● C preprocessor type: #if value|name #else #endif
This type overloads shell comments to become block comments. This style is only valid if the
cmd word is at the start of a line (optionally preceded by white space) and all the characters are
in a single word (ie #if and not # if). Otherwise, this is just another line comment and, as such,
interacts the in same way with the above comments (specifically, /* can hide #endif).
Value must be zero (0), one (1) or something previously created by #define.
It is an error if name hasn't been defined.

● #ifdef name #else #endif
Name is something that may have been created by #define. If it was, the #ifdef becomes “#if 1”,
otherwise, “#if 0”.

● #define name 0|1: Associate a name with zero or one for use with #if. #define doesn't span
compilation units (eg files) and thus isn't seen in included files and vice versa. Name must be a
valid name (valid is defined elsewhere).

● See the concepts section for #fcn, #text and #tokenize.

Data Reference Resolution

The compiler resolves references to data (objects) using a “look up, look down” algorithm:

A. Search upwards for the “root”. The root is the object in the class hierarchy that matches the first
element of the data reference.

1. First, is the first element:
● a const, number, string, expression
● self: The root is the enclosing class definition
● self.fcn: The root is the enclosing function definition

314 Appendix A: zkl Grammar

Appendix A: zkl Grammar

● TheVault: The search starts in the Vault
● If any of the above, goto B

2. The block is examined for:
● A parameter (if started in a fcn and still in that fcn).

In fcn f(a){a.len()}, the root of a.len() is parameter a.
● A function, class, register, variable, parent, call:

● If a call, the result of the call replaces the stuff up to that point.
"foo".len().type becomes 3.type → “Int”

● The value replaces name:
class C{var v="foo";} C.v.len() → 3
Name “v” is replaced with value “foo”: "foo".len()

● If match, goto B
3. If the top of this class definition is reached (the class that encloses the data reference):

● The parents are searched in a breadth first search for [class] instance data (parent, class,
function or variable).

● The methods and properties are searched144

dir() → self.dir()
A match here might not be the end of the line: name.len()

● If match, goto B
● the search moves to the enclosing block
● goto 2

4. If the root class (ie the source code file) is reached:
● The Vault is checked (eg File, Test.UnitTester)
● Syntactic sugar is checked (println, ask, etc)
● If not found, it is a syntax error
● goto B

5. The search moves to the enclosing block, goto 2
 B. Resolve down:
 The next item is resolved relative to the previous item.

Call, class, function, variable, parent, method, property
References are statically bound to the point where it becomes ambiguous145 and late bound from that
point on.

Attributes: const, private, protected, proxy

● If a variable has attribute const, it acts like a read-only variable with the restriction that it can
only be set once, and that once has to be in the var statement. If not set, it will forever be Void.
There is an exception to this rule: const variables in functions (such as init), are always set when
the function is run.

● Private variables, functions and classes are visible in the compilation unit (usually file) they are
defined in. Class.resolve won't find them, thus they are invisible outside of the compilation unit
although they can be seen with reflection (eg class.fcns). This is analogous to static functions in
C. In C++, this is between protected and private.

● Anonymous functions and classes are private.

144But print, println and ask are ignored as they can be both Object methods and sugar. Sugar wins here.
145The definition of ambiguous is somewhat ambiguous.

 315

Appendix A: zkl Grammar

● Private variables are anonymous; they share the attributes of private functions but can't be
found with reflection.

● If a class inherits from a compiled class, the new class won't be able to reference the
private objects in the parent.

● A protected variable can only be set if it is the first word in a data reference or if the reference is
to a protected parent variable.
 var [protected] v; v = 3; // OK
 class C { var [protected] v; } C.v = 3; // error
 class D(C) { C.v = 3; } // OK
This effectively restricts writing to the class they are defined in, containing classes and parents.
These variables are visible to everybody (unless marked private).

● A proxy variable is an active or trampoline variable; referencing it causes an action to happen.
For example
 var [proxy] pv = fcn {"test"}; pv; → “test”
The action is always pv(), where pv is the proxy variable.

Expressions

An expression is a group of operations that return a result. Expressions can do many things besides
math; data references, function calls, try/catch, etc. Sometimes an expression needs to be wrapped in
parentheses “()” to avoid ambiguity. Here is the algorithm:

1. Keep track of opening “(“ and closing “)” parentheses
2. Check for (*).*. For example ("1"+"2").len() → ("12").len() → 2
3. Check for “if”. Example: x:=(if (a==3) 56 else 65);
4. Check for “try”. Example: x=try{a/0}catch{"division by zero throws"}146

5. Check for “break” and “continue”: while(1){if (x==3) break}
6. Check for the different types of assignment: a=2; a+=2; a,b,c=f();
7. Check for a data reference
8. Check for a call (function, method, creation, etc)
9. Evaluate the “normal” math stuff: +,-,*,/,%, ==,!=, <,<=,>,>=, not, and, or, unary minus. There is

nothing special here, and objects can overload. The precedence rules are almost the same as C,
with the exception that evaluation is always left to right.

Operators (precedence: high to low) C Equivalent

() (function call) .(dot, resolve) []
() (grouping)

() . -> []
()

not, unary minus ! -

* / % (modulo) * / %

+ - + -

< <= > >= < <= > >=

== != == !=

and or (differs from C) && ||

146An interesting thing about this example is what happens if the try succeeds. For example, if a == 2 and the try is { a/1 },
then x is set to 2.

316 Appendix A: zkl Grammar

Appendix A: zkl Grammar

“or” and “and” evaluate their result as a boolean but don't produce a boolean. For example, (1 and 2)
evaluates to 2 but behaves as if it were True (since (2).toBool() returns True). They also “short
circuit”, which means they only evaluate as much of an expression as they need to. For example,
(a and 0 and b) can be reduced to (a and 0) (which is (0) unless a blows) and (a or 0 or b) can
be reduced to (a). You can take advantage of this in calculations.

● To access a list only if it has elements: (list and list[0]). This returns the empty list if list is
L() (since L().toBool() is False) and the first item if list isn't empty147.

● Code crunch: f() or throw(Exception.BadDay) throws an exception if f() doesn't return a
“positive” value. This is the same as if (not f()) throw(Exception.BadDay)

And factorial can be written: fcn(x){ x and x*self.fcn(x-1) or 1 }

Assignment (=, +=, -=, *=, /=) precedence is lower than grouping but is otherwise somewhat ambiguous.
If you use “=”, etc in a mixed expression, you almost always want to wrap it in (): if ((n=f()) !
= 4) doSomething(n)
Without the parentheses, this would evaluate as if(n=(f()!=4)), which is a Bool, not a number
(assuming f always returns a number).
In n=3+4, n→7; (n=3)+4, n→3; 3+n=4, n→4; the sum is always 7. When n is set is not specified.

Compose (:) “chunks” an expression; each chunk is evaluated and rolled into the next chunk, forming a
new chunk.

Ambiguities, or, what are you trying to express?
If the parser see a “(“, it tries to evaluate an expression. Otherwise, it looks for a statement. Failing that,
an expression (which, in turn, will look for some statements).
Now, what does if(X) 1 else 2; +5 mean? “If” is a statement, + 5 is an expression. But you can't add
a statement and expression so it means an error message. By adding ()s, it can be forced/cast to an
expression: (if(X) 1 else 2; +5) or (if(X) 1 else 2) +5
In the first case, a “;” is needed to terminate the if statement.
This doesn't need ()s (it doesn't start with “(“, it isn't a statement, maybe an expression):
5 + if(X) 1 else 2;; println("ick") but it does need two semis, one to terminate the if and the
second to terminate the expression. So you may prefer ()s and a single semi. Unless you have something
like: 5 + if(X) 1 else 2; +6; println("12 or 13") which really looks better with ()s:
5 + (if(X) 1 else 2) +6; If you are writing code you'll have to read later, it will probably make
your life easier to use ()s if in doubt.

Chained Compares
Comparison operators (==, !=, <, <=, >, >=) can be chained. For example,
A==B==C → A==B and B==C, where B is evaluated only once. Here are the rules:

● Only three terms (A,B,C) per chain.
● Terms can be anything that is legal in the expression.

Eg A == try { B } catch { C } != f(5); A<=(f(5)+1)>B
● Precedence can't be mixed. Eg A==B<C is not legal.
● Evaluation is left to right.
● and/or terminate a chain: A==B==C and E==F==G is two chains.
● ()s scope. Not very useful. (A==B)==C → Bool==C

147An even easier way to do this: list[0,1]

 317

Appendix A: zkl Grammar

Scoping

zkl is block (lexically) scoped; if something is created in a block, it stays there, unless explicitly moved
to a enclosing block. Classes, functions and variables are scoped to the class or function they are created
in. On occasion, something created outside a block will be moved into a block. For example, the loop
variable in a foreach statement is moved into the loop block. And, vice versa, a variable is will migrate
to nearest enclosing class scope, while a register sticks to its block.

It's all very complicated and would take a scientist to explain it.
-- Mystery Science Theater 3000

318 Appendix A: zkl Grammar

Appendix B: Additional Objects

Appendix B: Additional Objects

Libraries, Objects and Scripts
 that are not part of the Core

In addition to the “Core” objects, there are zkl components that not distributed with the executable.
These include shared libraries (Objects) and scripts that can downloaded from http://zenkinetic.com/.

How to Access
You can use Import to load and access any of these objects, assuming they exist where zkl can find
them. See the Environment Variables section for where those places are. For example, to load the
iso8601 class from it normal location (.../Time/iso8601.zsc or .../Time.iso8601.zkl), use
ISO8601:=Import("Time.iso8601"); Loading a shared library works the same way: To load zeelib
from .../Lib/zeelib.dll, use ZeeLib:=Import("zeelib");

Libraries
Libraries include zklBigNum (infinite precision numbers), zklCInvoke (call C code in libraries), zklLZO
(LZO compression), and zeelib (Zlib compression, including zip).

Scripts
There is a small set of scrips available for download. They include md5 (a md5 calculator for files),
hexDump (see the examples appendix), find (a very simple version of Unix find), zgrep (a simple
find/fgrep).

319

http://zenkinetic.com/d.aspx

Appendix B: Additional Objects

Utils.Compression.LZO

Inherits from: Object
Notes:

● Not part of the zkl Core
● Load this object like so: var LZO = Import("zklLZO");

Notes and References:
1. This library uses the miniLZO (v2.02) compression code, copyright Markus Franz Xaver

Johannes Oberhumer.
2. Very fast compression and very faster decompression.
3. Visit the LZO home page at http://www.oberhumer.com/opensource/lzo/
4. The LZO code is GPL'd.
5. See README.LZO, which is included (fun and informative but it won't help you use this

library).
6. See ZeeLib for another way of looking at compression or if you need zlib (gzip/.gz)

compatibility.
7. This library is thread safe.
8. Triva: The LZO compression code underlies the UPX (Ultimate Packer for eXecutables) utility,

which is pretty cool.
Test Suite: testLZO.zkl

Abstract
The LZO library provides a very simple way to compress and decompress data very quickly.

Methods
● adler32(data): Compute the Adler-32 (of zlib fame) check sum of data. This is a CRC like

value that can be computed quickly.
● compress(data): Compresses the data and returns the compressed data and information about

it. The original data is not changed.
Throws: IOError
Returns: L(size of the uncompressed data, compressed check sum, compressed data)

● decompress(size of the uncompressed data, compressed checksum, compressed
data): Restore the compressed data to its original uncompressed state. The extraneous data
provides the underlying code with a “header” so it can verify that the compressed data is valid.
The compressed data is not changed.
Throws: IOError, ValueError
Returns: Data

Properties
● authors: The people who wrote the code.

Returns: List of Strings
● libraries: A list of the names and authors of the libraries used.

Returns: List of Strings
● version : Returns the version number of the miniLZO library. This number makes sense in hex.

LZO.version.toString(16) → 2020 (= 02.02)
● versionDate : Returns the date code of the miniLZO library.

320 Utils.Compression.LZO

http://www.oberhumer.com/opensource/lzo/

Appendix B: Additional Objects

● versionString : Returns version string of the miniLZO library.

Discussion
LZO provides low overhead, very quick compression and decompression (visit the web page for stats).
If you just want to compress a block of data and then decompress it with a minimum of fuss, this is for
you. The compressor has low overhead, especially compared to compressors like GZIP and BZ2. On the
flip side, you have to keep track of the information the decompresser needs, you don't get a Stream
interface and you don't get a common format (ie, you can't give out compressed data and expect anyone
else to be able to decompress it, as you can with gzip'd data).

If you want to store your compressed data in a file or pass the compressed data over a socket, you'll need
to invent your own file format (so you can save the header information). At that point, zeelib might be
more convent (as it generates gzip headers).

Example:
 var LZO = Import("zklLZO");
 testFile := Data();

// create a bunch of data by writing a big class to bytes
 Compiler.Asm.writeRootClass(Compiler.Parser,testFile);
 // compress the data
 len,checksum,data := LZO.compress(testFile);
 println("Compressed %s to %s".fmt(testFile,data));

// decompress the data
 d := LZO.decompress(len,checksum,data);

// verify no data was lost
 testFile == d; // → True
Output: Compressed Data(44639) to Data(25833)
Compressed to almost half size, not bad.

 321

Appendix B: Additional Objects

Utils.Compression.ZeeLib

Objects: ZeeLib.Compressor, ZeeLib.Inflator
Inherits from: Stream, Object
Notes

● Not part of the zkl Core
● Load this object like so: var ZeeLib=Import("zeelib");

References
1. A Massively Spiffy Yet Delicately Unobtrusive Compression Library, http://www.zlib.net/
2. RFC 1950-2, http://www.ietf.org/rfc/rfc1950.txt, http://www.ietf.org/rfc/rfc1951.txt,

http://www.ietf.org/rfc/rfc1952.txt
3. The gzip compression utility, http://www.gzip.org/

Test Suite: testZeeLib.zkl
See Also: zipper.zkl, which compresses files into a gzip/pkzip/winRAR compatible file (located in the
distribution packages, which is creates).

Abstract
The zeelib library provides a interface to the zlib compression library. The resulting compressed data is
compatible with compression programs such as gzip and WinRAR. The objects can be used as parts of a
stream. Compressors are thread safe (for example, multiple threads can stream compressed data packets
using one compressor).

Compressors and Inflators have the same methods (although the parameters may differ) and properties.

Methods (for ZeeLib)
● calcAdler32(data): Compute the Adler-32 check sum of data.

Returns: Int
● calcCRC32(data): Compute the CRC-32 check sum of data.

Returns: Int
● Compressor(gzip_wrapper=False): If gzip_wrapper is True, the compressed data can be read

by programs such as gzip or WinRAR.
Returns: Compressor

● Inflator():
Throws: OutOfMemory, IOError (zlib error)
Returns: Inflator

Methods (for both Compressor and Inflator)
● calcAdler32(data): Compute the Adler-32 check sum of data.

Returns: Int
● calcCRC32(data): Compute the CRC-32 check sum of data.

Returns: Int
● close(): Close flushs all zlib data to the object and prohibits any future writes.

Returns: self
● create(): Create a new Compressor or Inflator. Once created, you can write data to compress or

inflate it.

322 Utils.Compression.ZeeLib

http://www.gzip.org/
http://www.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc1950.txt
http://www.zlib.net/

Appendix B: Additional Objects

● Compressor(gzip_wrapper=False): If gzip_wrapper is True, the compressed data can
be read by programs such as gzip or WinRAR.

● Inflator():
Throws: OutOfMemory, IOError (zlib error)
Returns: Compressor or Inflator

● drain([timeout]): Drain is useful if you want to get all of the data contained in a Compressor
or Inflator without using a read loop. Drain waits until the object is closed, reads all data (if any)
and returns it.
If a timeout is used and the object isn’t closed before time is up, Void is returned.
Returns: Data (might be empty), Void

● flush(): Does nothing. For compatibly with Stream.
● len(): Returns the number of bytes received from zlib. Unless closed, this is probably NOT the

number of bytes that have been compressed or inflated. Once the object has been closed, len()
will return the number of bytes that can be read. Between the time close is called and the first
read call, this is the size of compressed or inflated data (eg the size of a file after compression).
Read will decrement the length.
Returns: Int

● open(): Same as create. A closed Compressor or inflator can’t be reopened – calling open()
creates a new object.
See create.

● pump(sink,action,action,...): Read from self, until closed, pumping data through the
actions.
This can be useful to pump compressed data between threads:
var ZLib=Import("zeelib");
var compressor=ZLib.Compressor(), inflator=ZLib.Inflator();
Single thread:
 compressor.write("This is a test"); compressor.close();
 d:=compressor.pump(inflator.write) // → inflator
 .pump(Void);
 d.text → “This is a test”
Multi-threaded:
 fcn{compressor.pump(inflator.write)}.launch(); // Thread1
 fcn{inflator.pump(
 fcn(d){println("-->",d.text)})}.launch(); // Thread2
 compressor.write("This is a test"); // not a thread
 compressor.close();
 → “-->This is a test”
Thread1 moves compressed data from the compressor to the inflater. Thread2 pulls inflated data
from the inflator and prints it. If large amounts of data are compressed, it will dribble out in
chunks148. You can test this using compressor.write(File("bigFile").read()) multiple
times.
When the compressor is closed, it flushes its data and thread1 ends. The inflator sees the this-
data-has-been-compressed marker, auto closes, flushes, prints and exists.
Returns: Last action

● read([timeout]): Read waits until the Compressor or Inflator has a chunk of data or is closed
and then returns that data. The data is removed from the data queue. If the optional timeout
(seconds, interger or float) is used and if data is not ready in that time, Void is returned.

148You may need to aggregate the chunks to re-form the original data.

 323

Appendix B: Additional Objects

Throws: TheEnd if closed and empty.
Returns: Data (might be empty) or Void.

● walker(): Returns a Walker that uses read().
Returns: Walker

● write
● Compressor: write(String | Data): Compress some data.
● Inflator: write(Data): Inflate compressed data. Gzip format is automatically

detected and handled.
Throws: IOError (data is not compressed data)
Throws: OutOfMemory, IOError (object not open)
Returns: self

Properties (for both objects)
● adler32: Returns the rolling check sum, usually Adler32 but might be CRC-32.

Returns: Int
● authors: The people who wrote the code.

Returns: List of Strings
● chunkSize : Returns the size of the internal buffers used to hold zlib data chunks.
● isClosed: Returns True if not open (ie if never opened or has been closed).
● libraries: A list of the names and authors of the libraries used.

Returns: List of Strings
● version : Returns the version of the zlib library.

Warning
● Compressors: Multiple producers are supported; for example, threads writing packets to a

Compressor (see the test suite for an example). Multiple consumers doesn't make sense and aren't
supported. In other words, only ONE thread can read from a Compressor. Also, if one thread is
writing and another thread closes that object, it won’t be pretty.

● Inflater: Multiple producers doesn't make sense (the compressed data needs to be fed in the same
order it was produced). Multiple consumers also don't make sense because Zlib output is
chunked (that is, even if packets were compressed, you can't read the uncompressed data a
packet at a time from an Inflator).

Discussion
The zeelib library creates a ZeeLib object, which contains two objects (ZLib.Compressor and
ZLib.Inflator). Importing the library returns the ZeeLib object; access that to create a Compressor or
Inflator.

var ZeeLib=Import("zeelib"); // load the zeelib library
Compressor=ZeeLib.Compressor(); // create a new instance

324 Utils.Compression.ZeeLib

Appendix B: Additional Objects

The following code will compress a file into gzip format:
data:= // read entire file into Data
 File(textFile,"rb").read();
compressor:=ZeeLib.Compressor(True); // use gzip format
compressor.write(data); // compress the file
compressor.close();
compressedData:=compressor.drain();
File("x.gz","wb").write(compressedData).close();

To read a gzipped file, you could do the following:
gz:=ZeeLib.Inflator()

 .write(File("x.gz","rb").read()).close().drain();

The following code demonstrates compressing and inflating across two threads. This example is a bit
contrived (because it both compresses and inflates) but is small and works. An obvious change would be
to add a pipe to feed the compressing (or inflating) thread.
 // Multiprocess test, streaming data through a
 // Compressor to a Inflator.
var data=self.unasm(Data()); // generate some text
data.seek(0); // start at the beginning

var ZeeLib=Import("zeelib");
var source=ZeeLib.Compressor();
var sink =ZeeLib.Inflator();

fcn squeeze(data,src) { // Compression thread
 println("Compressing %d bytes".fmt(data.len()));
 // dribble data into the compressor
 try { while (True) { src.write(data.read(10)); } }
 catch(TheEnd) {}
 src.close(); // will cause the Sink to stop
 // exercise: why is println(source.len())
 // unreliable here?
}
fcn inflate(src,sink) { // Inflation thread
 size:=src.reduce('wrap(size,z){sink.write(z); size+z.len()},0);
 sink.close(); // sink now has a copy of the original data
 println("Inflated %d bytes to %d bytes".fmt(size,sink.len()));
}
squeeze.launch(data,source); // create the threads
inflate.launch(source,sink);
sink.drain(); // wait for sink to close (ie inflate thread to end)
 // Both threads are done (exercise: why?)
println("Done");

Example output:
 Compressing 6353 bytes
 Inflated 1391 bytes to 6353 bytes
 Done

 325

Appendix C: Illustrated zkl Code Examples

Appendix C: Illustrated zkl Code Examples
Appendix C: Illustrated zkl Code Examples...326

Hex Dump..326
Factorial...328
Processing Text Files with Scripts and Pipes...330
Roman Numbers..333
Device Drivers...335
Generators..336
Sequence/List Comprehension...339

Hex Dump

For programmers, a hexadecimal dump usually represents the back up against the wall: “What the *&
%^ is this program doing?!?” and is like looking at chicken entrails. Unpleasant, yes, but none the less,
you'll usually have to do it at some point.

>zkl hexDump Built/exception.zsc
 0: 20 20 7a 6b 48 00 00 24 | 31 2e 30 00 5a 4b 4c 20 zkH..$1.0.ZKL
 16: 53 65 72 69 61 6c 69 7a | 65 64 20 43 6c 61 73 73 Serialized Class
 32: 00 45 78 63 65 70 74 69 | 6f 6e 00 00 02 00 00 45 .Exception.....E
 48: 2b 61 74 74 72 69 62 75 | 74 65 73 3a 73 74 61 74 +attributes:stat
...

The above dump is an excerpt of a ZSC file dump. From this, you could verify that Asm.WriteRootClass
is working correctly.

Code
fcn hexDump(in, out=File.stdout){
 format1 :="%02.x ";
 format16:=format1 * 8 + "| " + format1 * 8;
 NFmt :="%4d: ";

 reg bytes,text, N=0, d=Data();
 try{
 while(1){ // repeat until end of file
 bytes=in.read(16).bytes();
 text =bytes.reduce(fcn(d,c){
 d.append(if(0x20<=c<=0x7E) c.toChar() else ".")
 }, d.clear()).text;
 out.writeln(NFmt.fmt(N),
 format16.fmt(bytes.xplode())," ",text);
 N+=16;
 }
 }

326

Appendix C: Illustrated zkl Code Examples

 catch(MissingArg){ // not a full line
 n:=bytes.len();
 if(n<=8)
 out.write(NFmt.fmt(N),(format1*n)
 .fmt(bytes.xplode())," ");
 else
 out.write(NFmt.fmt(N),
 (format1*8 + "| " +
 format1*(n-8)).fmt(bytes.xplode()));
 out.writeln(" "*(16-n), " ",text);
 }
 catch(TheEnd){}
}

Discussion
The code is dense.

The first thing to note is the prototype: hexDump(in, out=File.stdout)
Hex dump reads from an input stream (such as a File or Data) and writes to an output stream, which
defaults to the console (or whatever the console has been redirected to). Thus, it is simple to create a
script that dumps a file:
 Attributes(script);
 f:=File(vm.arglist[0],"rb");
 hexDump(f);
This opens the file in binary mode and lets hexDump have at it. It would be even easier to do this:
 hexDump(File.stdin);
But, on windows, if there is a control-Z in the file (common in a binary file), windows will treat that as
an End of File marker and close the file, which is not what we want.

Read Bytes
First, we read sixteen bytes at a time from the input stream:
 in.read(16).bytes(); → Data(16) to List of 16 integers
The thing to note here is, if there are less than sixteen bytes available, read will read what is available.
When there are no bytes available, read will throw TheEnd, which we catch. Thus, we process all bytes,
even if the file doesn't contain a multiple of sixteen.

Print Bytes
Each line of sixteen bytes is written as two hex characters, a space, the next byte, etc, followed by the
the bytes as text (printable characters only). The line is split into two groups of eight bytes for ease of
readability. The text format for a byte is “%02x “ or “%02.16B ”; two hex digits (with leading zero if
only one digit). By multiplying this string by eight, it is repeated eight times to give one group. Using
this resulting string as a format, we explode the list of bytes so they become parameters to .fmt. For
example: if bytes is L(8,9,10) and format is “%02x %02x | %02x”, then
 format.fmt(bytes.xplode())
 → "%02x %02x | %02x".fmt(L(8,9,10).xplode())
 → "%02x %02x | %02x".fmt(8,9,10)
 → “08 09 | 0a”

 327

Appendix C: Illustrated zkl Code Examples

Print Text
Next, we need to write the bytes as text. We'll define a printable character as one that is between space
(0x20) and tilde (~, 0x7E). If the byte isn't printable, substitute a dot. The problem is how to convert a
list of bytes or bunch of bytes to printable characters. The idea is to examine each byte and build a string
with the printable representation of that byte. We can do this using List.reduce as a data pump; each byte
is converted to printable (by a function) and then appended to the previous characters. Any of a number
of objects can be used; String, Data, Pipe, etc. We'll use Data out of a (probably misguided) sense of
efficiency. Here are the steps:
 1. fcn toPrintable(c)

 { if(0x20<=c<=0x7E) c.toChar() else "." }
This function takes an integer and returns a printable character. Note that we can do the
comparison without using “and”.

 2. fcn append(data,c){ data.append(toPrintable(c)); }
This will append the printable character to a Data.

 3. d=Data(); text=bytes.reduce(append, d.clear());
Here we walk each byte, convert it and append it to a Data. The Data is returned. D is cleared
each time so we can reuse it.

 4. text=text.text;
And finally!, the printable text is extracted from the Data.

And to show that we are really cool programmers, all these steps are packed into one very long
statement.
If you prefer to work with Strings, lines 2 and 3 would become:
 fcn append(str,c){ str + toPrintable(data,c); }
 text=bytes.reduce(append,"");
and line 4 is eliminated.

Partial Lines
And lastly, we have to handle partial lines (those will less than 16 bytes). We know when that happens
because fmt will throw a MissingArg if it doesn't have sixteen bytes to format. We catch that and deal
with one of two cases: eight bytes or less (one group) or two groups. Since we know that fmt threw the
error, we also know that bytes and text are valid (as they were calculated before the error occurred).

Factorial

The classic recursive factorial program can be written in a clever way. We'll actually look at cleverness
inside of clever, just to to be clever. A factorial program is written four ways.

Code
 1. fcn fact(n){ return(n and n*fact(n-1) or 1); }
 2. fcn fact(n){ n and n*self.fcn(n-1) or 1 }
Compare to:
 3. fcn fact(n){ // the recursive part. input: x output: x!

if(0==n) return(1); // 0! = 1
return(n*fact(n-1)); // n! = n*(n-1)!
}

328 Appendix C: Illustrated zkl Code Examples

Appendix C: Illustrated zkl Code Examples

 4. fcn fact(n){
 if(0==n) 1;
 else n*fact(n-1);
}

 5. fcn fact(n){ (1).reduce(n,fcn(N,n){ N*n },1) }
 or fcn fact(n){ (1).reduce(n,’*),1 }

Discussion
The first thing to note is that (1) and (2) are exactly the same. (2) is just lazy since it knows that last
calculation is the block result so it doesn't have to explicitly “return”. (3) is almost the same as (4), (4) is
actually a tiny bit bigger (two bytes) but the compiled code is essentially the same. (5) is just a loop
using a lambda function.

So, how does it work? First, both programs are only valid for non-negative integers and the results get
huge very fast so there is a fairly low limit on those integers before overflow occurs. With that out of the
way, we can perform an examination. We'll do this the old fashioned way: plug and grind.

1. fact(0) → return(0 and 0*fact(0-1) or 1) → return(False or 1) → return(1)
The key here is and/or. 0 is equivalent to False (0.toBool() is False) and (False and X) is
False, so 0*fact(0-1) is never evaluated and the “or” clause is the winner.

2. fact(1) → return(1 and 1*fact(1-1) or 1) → return(True and fact(0)) →
return(fact(0)) → return(1)
Here, 1 is equivalent to True and (True and X) is X so the “or” clause is ignored (assuming that
X is non-zero, which we know to be true in this case).

3. fact(2) → return(2 and 2*fact(2-1) or 1) → return(True and 2*fact(1)) →
return(2*fact(1)) → return(2*1) (substituting 2) → return(2)
Basically the same as 2, noting that 2.toBool() is True and using the result obtained in 2. The
program performs steps 3, then 2, then 1 (which is why it is recursive) but we've wave our hands
here and save some brain cells.

4. And so on for other integers.

What does the compiler think of this cleverness? Not much, the compiled code is all of two bytes
smaller than the more legible code.

But Wait! There's More
 fcn factTail(x,N=1) {
 if(0==x) return(N);
 return(self.fcn(x - 1,x*N));
 }
 factTail(7) → 5040
The code is longer and isn't as “pretty”. But! it doesn't recurse. That's right, the compiler converts this
into an iterative function though the magic of tail recursion. The generated code becomes something like
this:
 fcn factTail(x,N=1) {
 if(0==x) return(N);
 x-=1; N*=x;
 goto factTail;
 }

 329

Appendix C: Illustrated zkl Code Examples

What about integer overflow? factTail(100) → 0 so something is clearly wrong. Let's use infinite
precision integers to avoid this problem:
 var [const] BigNum=Import("zklBigNum");
 factTail(BigNum(100))
 → 93326215443944152681699238856266700490715968264381621

46859296389521759999322991560894146397615651828625369
7920827223758251185210916864000000000000000000000000

Processing Text Files with Scripts and Pipes

zkl can be used to process text files in a manner somewhat analogous to Perl but not as concisely and
with a different “flow”.
In this this example, the goal is to convert a look up table written in C to a gperf hash table. The
command line will look like:
 >zkl extractTable < list.c | gperf | zkl gperf -i list
There are two zkl scripts (extractTable.zkl and gperf.zkl) that are used; one to extract the table from C
code and prep it for gperf and the other to post process the gperf output. gperf
(http://www.gnu.org/software/gperf/) is the GNU perfect hash table generator. gperf hash tables are used
by the zkl VM but gperf produces C code that needs to be modified so that it can be compiled into the
VM.

Examples of Text
From list.c (over 4,000 lines of C with five tables):
 static Instance *
 List_makeReadOnly(Instance *self, pArglist arglist, pVM vm) {
 return convertToROList(self);
 }
 static const MethodTable listMethods[] =
 {
 "create", List_create,
 "toString", List_toString,

// utility methods
 "makeReadOnly", List_makeReadOnly,
 0, 0
 };
What gperf wants to see the above transformed into:

MethodTable
%struct-type
%language=ANSI-C
%readonly-tables
%delimiters=,
%enum
%omit-struct-type
%%
"create", List_create,
"toString", List_toString,
"makeReadOnly", List_makeReadOnly,

We'll skip the two gperfs; their output is copious and extraneous for this example.

330 Appendix C: Illustrated zkl Code Examples

http://www.gnu.org/software/gperf/

Appendix C: Illustrated zkl Code Examples

Code
/* extractTable.zkl: Extract a Method or Property table
 * from a C file and convert it to gperf format
 */
Attributes(script); // (1)

var structname="MethodTable";
var name ="";

Import("Utils.Argh")(// (2)
L("propertyTable","p","Extract a property table",
 fcn{ structname="PropertyTable" }),
L("methodTable", "m","Extract a method table (default)", fcn{}),
L("+name", "n","The name of the table", fcn(arg){ name=arg }),
).parse(vm.arglist);

walker:=File.stdin.walker(); // (3)
//cFile :=File.stdin.readln(*); // (4)
//walker:=cFile.walker();

 // Match "MethodTable ???[] = " or
 // "MethodTable methodTable[] = "
tableName:="*%s*%s\\[]*=*".fmt(structname,name); // (5)

try{ // look for: MethodTable methodTable[] = // (6)
 while (not walker.next().matches(tableName)){}
 walker.next();
}
catch(TheEnd){
 File.stderr.writeln("Extract: Didn't find ",name);
 System.exit(1);
}

println(// (7)
structname,"\n",
"%struct-type\n",
"%language=ANSI-C\n",
"%readonly-tables\n",
"%delimiters=,\n",
"%enum\n",
"%omit-struct-type\n",
"%%");

while (not (line:=walker.next().strip()).matches("0,*0")){ // (8)
 if(not line or line.matches("//*")) continue;
 println(line);
}

Discussion
This code is very linear:

1. Make it clear to everybody (from the user to the compiler) that this is a script.

 331

Appendix C: Illustrated zkl Code Examples

2. Parse the command line options to find out what table to look for.
3. Create a way to read the file a line at a time.
4. Another way to read the file: read the entire C file into a list and read from that list.
5. Create a search pattern
6. Find the table.
7. Write the gperf header.
8. Read the table, modify it to gperf format and write it.

You might be wondering why “.zkl” isn't specified on the command line
>zkl extractTable < list.c | gperf | zkl gperf -i list

for extractTable.zkl or gperf.zkl. This isn't a typo, the zkl shell will look for “.zkl” and “.zsc” files and
also search the vault.

In Depth:
1. The script attribute isn't necessary in this case but it does make it clear what the intent of this

code is.
2. Use the Argh class to parse the command line. Standard stuff. If an option is found (--

propertyTable, --methodTable, or --name), a function is called to deal with it. If there is an error,
Argh throws an exception and VM exits with a non-zero value, which breaks the pipe line.
 >zkl extractTable -X < list.c | gperf | zkl gperf
 Unknown option: X
 Options:
 --methodTable (-m) : Extract a method table (default)
 --name (-n) <arg>: The name of the table
 --propertyTable (-p) : Extract a property table
 VM#32 caught this unhandled exception:
 NameError : Unknown option: X
 Stack trace for VM#32
 ...
 (standard input): The input file is empty!

Import("Utils.Argh")(optionParameters).parse(cmdLineArgs)
Import searches for the named class (Argh), creates a copy and calls the init function with
parameters. The parse method/function of the new Argh instance is then called with the
command line args. How is the command line converted into the arglist? Since a script is
basically a class constructor and constructors don't have a named parameter list, the relevant
parts of argv are copied to vm.arglist.
The option parameters describe each possible command line option. Each is a list: long name
(with a “+” if a argument is required), short name, description and optional function.

3. This line is the key to this script. We explicitly create a Walker so we can process the file at our
pace (rather than implicitly via foreach). Doing this allows us to structure our look at the file in
way better suited to our needs.

4. (2) isn't the only way to do this, it isn't even the only other way. If we needed to edit the file
(delete, add and modify lines, as gperf.zkl does), reading the entire file into a list of lines and
using a walker on that works well; the walker also acts as a “cursor” into the file.

5. Since the table name isn't hard coded, we have to create the search pattern on the fly. We want to
be a bit clever about this and not require a table name be specified. If we are looking for a
method table (the default), structname is “MethodTable”. Our two patterns are:
 "*MethodTable*\[]*=*"

332 Appendix C: Illustrated zkl Code Examples

Appendix C: Illustrated zkl Code Examples

Or, if a name is specified (eg “listMethods”):
 "*MethodTable*listMethods\[]*=*"
Both these patterns will match
 "static const MethodTable listMethods[] ="

6. Here we step through the file. We look at each line until one matches the pattern we are looking
for. If we find it, we skip the next line (“{“) and go to the next step. If we search the entire file
and don't find a matching line, walker throws TheEnd. We could leave it at that but the user
would probably be at a loss to figure what the hell went wrong. So we catch the exception and
print a more meaningful error to standard error:
>zkl extractTable -n fooMethods < list.c | gperf | zkl gperf

Extract: Didn't find fooMethods
(standard input): The input file is empty!

7. Nothing special here, just print a gperf header to standard out. Each gperf declaration needs to be
on a separate line, so “\n” (newline) is used in println to specify that.

8. Walk the rest of the table, until the end of the table is reached.
The end of the table is marked by a line that is “0,0”, so we can stop when we find it. There is a
lot going on in the while line. First, the line is read, leading and trailing space is stripped from it
and it is stored in the “line” register. If line is “0,[space]0”, it is the end of the table and the string
matches method will return True. Note, if the line is “0,0,” (trailing comma, a valid terminator
for a C array initializer), this will miss it.

We don't want to send blank or comment lines to gperf (it doesn't like them) so we skip them.
Since we stripped out white space, a blank line is “” (which has zero length, which is what not
tests for in strings). A comment line is a C++ style comment on a blank line (“ // comment”) (a
convention I force for tables, comments at the end of a non-blank line is fine). If the line matches
either of these conditions, skip that line.

Otherwise, just print the table line.

Roman Numbers

Ever consider how cool it would be to write
 Roman.CCXX + Roman.XLII → CCLXII(262)
Well, you can! If you can solve this problem: how to do you get a class to meaningfully deal with a
method/fcn/etc that is unknown at compile time? In this case, it makes absolutely no sense to have a
fcn/variable for every possible roman numeral, so there needs to be another way for the Roman class to
accept an arbitrary roman number. The normal way would be to write Roman(“CCXX”) but, for this
example, we want to write Roman.CCXX. The solution is use late binding to redirect the unknown
method references. Most dynamic languages offer support for this in some way, shape or form. For
example, Ruby has the “method_missing” method.
This idea for this example came from Ruby Quiz #22, “Roman Numerals”.

Code
 var Roman=RomanNumber;

Yes, that's it. Aside from the RomanNumber class, which is a run of the mill boring class. In use:
 var Roman=RomanNumber; // Force late binding
 println(Roman.CCXX); → “CCXX(220)”
 r:=Roman.XLII; println(r); → “XLII(42)”

 333

Appendix C: Illustrated zkl Code Examples

 println(Roman.CCXX + Roman.XLII); → “CCLXII(262)”
 println(Roman.XL + 2); → XLII(42)
 Roman.IA; → ValueError
 println(RomanNumber.toRoman(42)); → “XLII”

How It Works
Just what is the man behind the curtain doing to make this work? First, we can't let the compiler
statically bind to the RomanNumber class, so we store it in a variable, which will force the compiler to
use late binding. Next, we link into the “method not found” method, which the VM uses to resolve
something that can't be found. When we write Roman.CCXX, the compiler turns this into
RomanNumber.resolve("CCXX"), which isn't in RomanNumber, so the VM calls
RomanNumber.__notFound("CCXX").

For extra credit, what does Roman.CCXX("II") do? How about Roman.CCXX.II? If you answered 2 and
2, you are correct. If you know why, pat yourself on the back.

More Code
Here is the code for the RomanNumber class. It is a quick hack in every sense of the word, written
solely to explore, so tread carefully if you want to use it for more than that. It is basically a port, with
garnish, of Jason Bailey's solution to the Ruby Quiz #22.

var romans=L(// a list of lists
 L("M", 1000), L("CM", 900), L("D", 500), L("CD", 400),
 L("C", 100), L("XC", 90), L("L", 50), L("XL", 40),
 L("X", 10), L("IX", 9), L("V", 5), L("IV", 4),
 L("I", 1));

class RomanNumber{
 var value, text;
 // create a new instance so we can add two Roman numbers
 fcn __notFound(name){ return(self(name)); }
 fcn init(text){
 self.text=text;
 value =toArabic(text);
 }

 // romanNumber needs to be upper case
 fcn toArabic(romanNumber){
 if(not RegExp("^[CDILMVX]+$").matches(romanNumber))
 throw(Exception.ValueError("Not a Roman number: %s"

.fmt(romanNumber)));
 reg value=0;
 foreach R,N in (romans){ // eg "C",100
 while(0==romanNumber.find(R)){
 value+=N;
 romanNumber=romanNumber[R.len(),*];
 }
 }
 return(value);
 }

334 Appendix C: Illustrated zkl Code Examples

Appendix C: Illustrated zkl Code Examples

 fcn toRoman(i){ // convert int to a roman number
 reg text="";
 foreach R,N in (romans)
 { z:=i/N; text+=R*z; i=i%N; }
 return(text);
 }
 fcn toString { return("%s(%s)".fmt(text,value)); }
 fcn toInt { return(value); }
 fcn __opAdd(R){ self(toRoman(value + R.toInt())) }
}

Since toArabic and toRoman are probably not obvious, here are some hints.
toArabic("XLII"):

R = "M", N = 1000, value = 0, romanNumber = "XLII"
R = "CM", N = 900, value = 0, romanNumber = "XLII"
…
R = "XL", N = 40, value = 0, romanNumber = "XLII"
R = "X", N = 10, value = 40, romanNumber = "II",
…
R = "I", N = 1, value = 40, romanNumber = "II"
R = "I", N = 1, value = 41, romanNumber = "I"
R = "I", N = 1, value = 42, romanNumber = ""

toRoman(42):
R = "M", N = 1000, z = 0, text = "", i = 42
…
R = "L", N = 50, z = 0, text = "", i = 42
R = "XL", N = 40, z = 1, text = "XL", i = 2
R = "X", N = 10, z = 0, text = "XL", i = 2
…
R = "IV", N = 4, z = 0, text = "XL", i = 2
R = "I", N = 1, z = 2, text = "XLII", i = 0

Device Drivers

Device drivers. Ugh. They are always changing and you hate recompiling your code to add a new driver.
If you write to a “virtual” driver, one that every “real” device driver has to conform to, you load can
drivers at run time and not touch your “main” code.
Here is a (very simple) virtual driver:
 class VirtualDriver{
 var name="VirtualDriver";
 fcn read(n) { println("Reading from ",name); }
 fcn write(x){ println("Writing to ",name); }
 fcn open { println("Opening ",name); }
 fcn close { println("Closing ",name); }
 }

 335

Appendix C: Illustrated zkl Code Examples

And now, our code that writes to the hardware driver, plus a proxy class that insulates us from the actual
driver149:
 class Hardware{
 var [mixin] driver=VirtualDriver;
 fcn installDriver(driver){ self.driver=driver; }
 fcn doCoolThings{
 driver.open();
 driver.write("This is a test");
 driver.read(10);
 driver.close();
 }
 }
When we tell the hardware to do cool things, we get:
 hardware:=Hardware();
 hardware.doCoolThings();
 → Opening VirtualDriver

Writing to VirtualDriver
Reading from VirtualDriver
Closing VirtualDriver

OK, now that we have the stub of our hardware controller, let's write a driver for the Gizmo 56
hardware, install and test it. We'll cheat and create the simplest driver possible:
 class GizmoDriver(VirtualDriver){
 fcn init{ name="Gizmo56 driver"; }
 }
Install a new instance of the driver in the existing Hardware instance and run another test:
 hardware.installDriver(GizmoDriver());
 hardware.doCoolThings();
 → Opening Gizmo56 driver

Writing to Gizmo56 driver
Reading from Gizmo56 driver
Closing Gizmo56 driver

This example shows that we can write our high level device controller and install device drivers at run
time. There are no recompiles, no relinking, no touching the controller. There is no need to have any
drivers resident at run time, once the device is queried or a configuration file is read, the appropriate
driver can be loaded and easily installed. You can even swap between drivers on the fly.
The advantage to using a mixin var (vs a normal var) is that the compiler can check for invalid method
calls. For example, if the Hardware class were to call “driver.foo()”, the compiler would flag this as a
syntax error because foo isn't in VirtualDriver. If it wasn't a mixin, this check would be punted to
runtime.

Generators

Generators allow you to create iterators that rely on a continuing series of calculations or recursion. For
example, consider the following function to calculate prime numbers150.

149As we can't have dynamic parents.
150findPrimes was modified from the Wikipedia article on Generators

336 Appendix C: Illustrated zkl Code Examples

Appendix C: Illustrated zkl Code Examples

fcn findPrimes{
 println(2); // vm.yield(2);
 n:=3; primes:=L(2);
 while(True){
 if(not primes.filter1(fcn(p,n){ n%p==0 },n))
 { // a new prime number has been found
 println(n); // vm.yield(n);
 primes.append(n);
 }
 n+=2; // Prime numbers (>2) are odd
 }
}
This will print an infinite list of primes:
 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 …
Which is nice but what if we want to use the primes for calculations? Enter Generators. zkl Generators
are built with fibers (co-operative threads) and fibers use the VM yield method to yield a value, so if
we replace the println lines (above) with vm.yield, we have written a Generator. All that is left to do
is to package it:
 g:=Utils.Generator(findPrimes);
 println(g.next());
 → 2
Or, to repeat the “print the infinite list” example:
 foreach prime in (Utils.Generator(findPrimes)){ prime.println();}
 → 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 …
In this example, foreach asks the Generator to return a Walker, which it does, then foreach uses that
Walker to iterate.
To get the next twenty primes: g.walk(20)

The important thing to note about findPrimes is that finding the next prime number requires all of the
previously found primes. It is expensive to ask for primes[n], primes[n+1], etc, which a Walker would
typically do.

Code
class Generator{ // → Walker
 fcn init(f,args){
 var [const] fiber = vm.createFiber(start,vm.pasteArgs());
 returnClass(walker());
 }
 fcn walker{ (0).walker(*).tweak(next); }
 fcn [private] start(f,args){
 vm.yield(vm);
 f(vm.pasteArgs(1)); // f(args), only called once
 return(Void.Stop); // all done, stop walking
 }
 fcn [private] next{ fiber.resume() }
}

In this case, fibers are used as a continuation. A prime is computed, returned, the fiber stalls, and the VM
state is frozen. When another prime is requested, the VM is thawed, the fiber resumes as if nothing had
happened and calculates the next prime.

 337

Appendix C: Illustrated zkl Code Examples

Let's walk through the code and see how fibers are used. First, “init” creates a fiber running the “start”
function with whatever parameters where passed in. The first thing the fiber does is to yield the
“continuation” (the VM running the fiber). The fiber is now stalled but is ready to start calculating
primes. A Walker is created and returned to put a nice wrapper on the Generator. Nothing happens until
somebody calls “next” (via walker.next()). When it is called, the fiber resumes. Now start has to
repackage the parameters. Init didn't know what parameters were actually passed in, if any, so it just
punts whatever it is given over the fence. Now we have to deal with them. We know the function is the
first item, and that the rest of the list needs to be converted into parameters to the function:

● Generator(findPrimes) → start(findPrimes) → findPrimes()
● Generator(findPrimes,1,2,3) → start(findPrimes,1,2,3) → findPrimes(1,2,3)

Now, program execution will stay in findPrimes, until findPrimes is done (which it never is). Once you
find all the primes you want, you can abandon the generator and let the garbage collector “take care” of
it. If findPrimes had a built in limit and exited once it reached that limit, the Generator would
return(Void.Stop)), which would signal the Walker that it is finished and the foreach loop would end.

A much more efficient prime finder is this sieve, which also uses Generators. It is modification of a
Python program posed to StackOverflow151

fcn postponed_sieve(){ # postponed sieve, by Will Ness
 vm.yield(2); vm.yield(3); # original code David Eppstein,
 vm.yield(5); vm.yield(7);
 D:=Dictionary(); # ActiveState Recipe 2002
 ps:=Utils.Generator(postponed_sieve); # a separate Primes Supply
 p:=ps.pump(2,Void); # (3) a Prime to add to dict
 q:=p*p; # (9) when its sQuare is
 c:=9; # the next Candidate
 while(1){
 if(not D.holds(c)){ # not a multiple of previous primes
 if(c < q) vm.yield(c); # a prime, or
 else{ # (c==q): # the next prime's square:
 add(D,c + 2*p,2*p); # (9+6,6 : 15,21,27,33,...)
 p=ps.next(); # (5)
 q=p*p; # (25)
 }
 }else{ # 'c' is a composite:
 s:=D.pop(c); # step of increment
 add(D,c + s,s); # next multiple, same step
 }
 c+=2; # next odd candidate
 }
}
fcn add(D,x,s){ # make no multiple keys in Dict
 while(D.holds(x)){ x+=s } # increment by the given step
 D[x]=s;
}
To generate the first 200,000 primes:
primes:=Utils.Generator(postponed_sieve);
N:=0d200_000;
primes.pump(N,Void,Console.println);
println("The first %,d primes.".fmt(N));

151//http://stackoverflow.com/questions/2211990/how-to-implement-an-efficient-infinite-generator-of-
prime-numbers-in-python/10733621#10733621

338 Appendix C: Illustrated zkl Code Examples

http://http://stackoverflow.com/questions/2211990/how-to-implement-an-efficient-infinite-generator-of-prime-numbers-in-python/10733621#10733621

Appendix C: Illustrated zkl Code Examples

Sequence/List Comprehension

List comprehension is used in functional programming to express, in a concise manner, building lists
with nested loops. The resulting lists can be infinitely long. Consider this line of Haskell:
 take 10 [2*x*y | x<-[0..],x^2>3, y<-[1,3..x],y^2<100-x^2]
 → [4,6,18,8,24,10,30,50,12,36]
which means take the first 10 items from the [infinite] list created by the stuff in []s, which is an
expression (2xy) and two loops with guards. The first loop has x going from zero to forever where x
squared is greater than three and the second has y as 1 to x counting by two as long as y matches some
calculation. Or
foreach x in ([0..]){
 if(x*x > 3){
 foreach y in ([1..x,2]){
 if(y*y < 100–x*x) yield(2*x*y);
 }
 }
}
So, how to write a function that does comprehension? How about some recursion:
Given: an action, parameters and a list of sequences and filters:
 If the list is empty, run action(parameters) and return the result
 else
 Get the first sequence/filter combo from the list
 If sequence is a function, call it to get the sequence
 Get an item (from the sequence) and add it to the parameters
 Run each filter with those parameters.
 If all the filters pass, recurse (with the reduced list)

The Haskell equivalent becomes:
gerber152(fcn(x,y){2*x*y},
 T([0..], fcn(x){x*x>3}),
 T(fcn(x){[1..x,2]}, fcn(x,y){y*y<100-x*x}))
 .walk(10) → L(4,6,18,8,24,10,30,50,12,36)
Not as pretty as Haskell but it works.

And here is the code:
 4: grind:=fcn(action,[T]args,[T]sfs){
 5: if(not sfs){ // at the bottom, do action
 6: r:=action(args.xplode());
 7: vm.yield(r);
 8: return(); // back out of recursion
 9: }
sfs is the list (of lists) containing sequences and filters (with a mixin to indicate it is expected to be a
list).
Since the parameters are packaged in a list, they need to be unpackaged when calling action; .xplode()
does that. This is going to be packaged in a Generator (so infinite lists aren't a problem), so we yield the
result.

152Because it purées and strains data.

 339

Appendix C: Illustrated zkl Code Examples

10: sf:=sfs[0]; // seq & filters, T(fCreateWalker,...)
11: sequence:=sf[0];
12: if(self.fcn.isType(sequence))
13: sequence=sequence(args.xplode());
14: else if(Walker.isType(sequence))
15: sequence.reset();
This bit of code is a bit funny. If sequence is a Walker, we need to reset it because we iterate over it
multiple times. (If it is a collection, such as “abc”, a [new] Walker will be created automagically). If it is
a function, that function encodes the sequence, eg fcn(x){[1..x,2]}. The function is passed the
parameters that are in play at that point.

16: foreach arg in (sequence){ // create or reuse Walker
17: arglist:=args.append(arg);
18: r:=sf[1,*].runNFilter(False,0,arglist.xplode());
19: if(not r) self.fcn(action,arglist,sfs[1,*]);
20: }
21: };
And this is the meat. runNFilter runs each filter, and, if a filter returns False, runNFilter stops and
returns True (strangely enough). If all the filters return True, False if returned (ie no failures) and we
have a good set of values. Trim the list of sequences and filters and recurse.

And now, the finishing touch: add a wrapper to simplify the call and return a Generator (see the previous
example):
 3: fcn gerber(action,sequencesAndFilters){
<the grind function, see above>
22: return(Utils.Generator(
23: grind,action,T,T(vm.pasteArgs(1))));
24: }

The nice thing about this code is that it works not just for numbers but for any collection that has a
walker.153

153Note: For the “do it now” case, there is a more concise solution using recursive pumps.

340 Appendix C: Illustrated zkl Code Examples

Appendix D: A Toy Web Server

Appendix D: A Toy Web Server
Abstract
This example is of a web server. It is a toy but illustrates using multiple threads to process requests, TCP
sockets and how to write difficult to read code. All the web pages are included in the source code to
make this a self contained example. A CGI example is included. The server takes about 60 lines of code,
the rest is the web pages.

To Run
C:\ZKL>zkl Src\httpServer.zkl
The server prints a start up message: HTTP server started at core-shot:8080
Then point your brower at http://127.0.0.1:8080 (or the address of the machine running the server) and
start clicking.

//-*-c-*-
//<pre>
// httpServer.zkl: A toy web server.
// All the web site pages are here, including a CGI one.
// The server is threaded.
// Point your browser at http://127.0.0.1:8080
// http://www.w3.org/Protocols/rfc2616/rfc2616.html

const PORT=8080, SERVLET_THREADS=4;

341

http://127.0.0.1:8080/

Appendix D: A Toy Web Server

var [const] BigNum=Import("zklBigNum");

 /* ** */
 /* ********************** The Server ********************** */
 /* ** */

 // A class to process requests from clients (eg browsers)
 // in a thread. Requests are received via a pipe, which feeds
 // all Servlet threads.
class Servlet{
 fcn init(jobPipe){ self.launch(jobPipe); }
 fcn liftoff(jobPipe){
 while(1){ // read request, write response, repeat
 socket:=jobPipe.read();
 if(socket.wait(60)!=1) // what is Chrome doing?
 { socket.close(); continue; }
 if(request:=socket.read())

 try{ processRequest(request,socket); }catch{}
 }
 }
 fcn splashdown(h,e){ println("Servlet died before its time"); }
}

 // map requested page to fcn
var getMap=Dictionary("/",homePage, "/favicon.ico",favicon,
 "/testPage",testPage);

fcn processRequest(request,socket){
 println("vvvvvvvvv ",vm,"\n",request.text,"\n^^^^^^^^^^^");

 response:="";

 req:=request.text.split("\r\n");
 method,page:=req[0].split();

 switch(method){ // GET, HEAD, POST, etc
 case("GET"){
 response=
 (if(n:=page.find("?")) cgi(page[n+1,*]) else
 getMap.find(page,homePage)());
 }
 case("HEAD"){ response=responseHeader(); }
// else do something
 }
 socket.write(response); socket.close(); // no Keep-Alive
}

 //////////////////// Start the server ///////////////////////

var jobPipe=Thread.Pipe(); // a queue of requests
do(SERVLET_THREADS){ Servlet(jobPipe) } // start threads

 // Create the HTTP server listen socket

342 Appendix D: A Toy Web Server

Appendix D: A Toy Web Server

 // Sits here forever passing client HTTP connects to Servlets
serverSocket:=Network.TCPServerSocket.open(PORT);
println("HTTP server started at http://",
 serverSocket.hostname, ":", serverSocket.port);
serverSocket.listen(fcn(socket){ jobPipe.write(socket); });

 /* ** */
 /* ********************* The Web Site ********************* */
 /* ** */

fcn responseHeader(status=200,reason="OK",other=""){
String(
"HTTP/1.0 ",status," ",reason,"\r\n"
,Time.Date.httpDate(),"\r\n"
"Server: ZTWS (zkl)\r\n"
"Connection: close\r\n"
"Content-Type: text/html; charset=UTF-8\r\n"
,other,
"\r\n")}

const BG="http://www.zenkinetic.com/Images/zklbg3.jpg";

 ////////////////////////// Home page /////////////////////////
fcn homePage(x=5,answer=120){ // GET / HTTP/1.1
String(
responseHeader(),
"<HTML>\n"
"<HEAD>\n"
 "<title>ZKL Toy Web Server</title>\n"
 0'|<link rel="shortcut icon" href="http://www.zenkinetic.com/favicon.ico"/>|
"\n</HEAD>\n"
 0'|<BODY background="| + BG + 0'|">| "\n"
 "\n"
 "<center>ZKL Toy Web Server</center>\n"
 "\n",
 "<center>Powered by zkl %s (%s) (%s worker threads)"
 .fmt(Language.version[0,3].concat("."),System.OS,vm.numThreads),
 "</center><hr/>\n"
 0'|Zenkinetic home page</br>|
 0'|Test page on this server</br>|
 "<form>"
 "Compute factorial: "
 0'|<input type=input name=value maxlength="4" size="4"|
 0'|value="|,x,0'|"/>|,
 0'|<input type=submit name="fact" value="calc"/>|
 ,"
",x,"! = ",answer,
 "</form>"
 ,"<hr/>",Time.Date.ctime(),
"</BODY>\n"
"</HTML>")}

 ////////////////////// Test page ///////////////////////
fcn testPage{ // GET /page HTTP/1.1

 343

Appendix D: A Toy Web Server

String(
responseHeader(),
"<HTML>\n"
"<HEAD>\n"
 "<title>ZTWS test page</title>\n"
"\n</HEAD>\n"
0'|<BODY background="| + BG + 0'|">| "\n"
 "Test page: Does the browser request the favicon?
\n"
 0'|Go home</br>|
"</BODY></HTML>")}

 /////////////////////// favicon //////////////////////////
fcn favicon{ // "GET /favicon.ico HTTP/1.1", Chrome/Opera do this
 responseHeader(303,"See Other",
 "Location: http://www.zenkinetic.com/favicon.ico");
}

 ////////////////////// CGI: calc factorial ////////////////////
fcn factTail(n,N=1){
 if(n==0) return(N);
 return(self.fcn(n - 1,n*N));
}

fcn cgi(queryString){ // GET /?value=8&fact=calc HTTP/1.1
 args:=queryString.replace("+"," ");
 args=args.split("&").apply("split","=").toDictionary();
 try{
 x:=BigNum(args["value"].toInt());
 if(x>0) return(homePage(x,"%,d".fmt(factTail(x))));
 }catch{}
 return(homePage());
}

344 Appendix D: A Toy Web Server

Index

Index
abs, Float................................172
abs, Int....................................181
acos, Float...............................174
acquire, Lock..........................100
acquireForReading, WriteLock
..102
acquireForWriting, WriteLock
..102
add, Dictionary.......................148
add, Vault................................287
addAs, Vault...........................287
addClass, Class.......................111
addFcn, Class..........................111
addHMS, Time.Date...............270
addrInfo, TCPClientSocket....205
addYMD, Time.Date..............270
adler32, LZO..........................320
annoyances, shell....................232
anonymous (lambda) fcns........42
anonymous classes...................21
append..

Data....................................130
List.....................................189
String.................................234

appendKV, Dictionary............148
appendV, Dictionary...............148
apply...

List.....................................194
Notes on...............................91
String.................................234
Walker................................299

apply2, List.............................195
Argh, Utils..............................273
arglist, VM..............................292
argsMatch, VM.......................290
argv, System...........................247
asin, Float...............................174
ask...11

Console..............................129
ask, File..................................163
Asm..122
Assignment, _ is ignore............83
Assignment, a=b=c=x..............83
assignment, list.................82, 310

Assignment, multiple...............83
atan, Float...............................174
atan2, Float.............................174
AtomicBool..............................96
AtomicInt.................................98
AtomicLock............................100
Attributes..................................13
attributes, class.......................112
attributes, Fcn.........................158
authors, Language..................187
Automatic creation, reg............63
BaseClass.....................................

Class...................................106
Deferred.............................143
Object.................................215

bestFit, Vault...........................287
binary tree...............................295
binding rules...........................119
binding, fcn...............................44
bitAnd, Int..............................181
bitNot, Int...............................181
bitOr, Int.................................181
bitXor, Int...............................181
BlackHole, Utils.....................276
block.......................................308
Block comment: #<<<#............27
blowChunks, Utils.Helpers.. . .278
Bool..105
breakage, Pipe........................260
breakIt, Pipe...........................257
build, Fcn................................158
buildWad, Wad.......................281
bytes, Data..............................130
cache, Vault............................287
calcAdler32, ZeeLib...............322
calcChunk, List.......................195
calcCRC32, ZeeLib................322
call, Op...................................221
callMethod, List.....................195
callProperty, List....................196
Cartesian Product.....................53
cartesian product, Walker.......299
catch...74
ceil, Float................................172

chain, Walker..........................299
charAt, Data...........................131
charAt, String.........................234
chase, Vault.............................288
chdir, System..........................245
chunk, Walker.........................299
clamp, Float............................172
clamp, Int................................181
Class.................................15, 106
class construction order............18
classes, Class..........................112
classPath, System...................247
clear..

AtomicBool.........................97
Data....................................131
List.....................................189
Pipe....................................257

client/server..................................
TCPClientSocket...............209
TCPServerSocket...............211

Clock......................................268
close..

Console..............................129
Data....................................131
File.....................................163
List.....................................194
Pipe....................................257
String.................................234
TCPClientSocket...............205
TCPServerSocket...............210
ZeeLib................................322

closeTo, Float.........................172
closure......................46, 146, 216
cmd, System...........................245
code, Fcn................................158
collect, GarbageMan..............177
comments, nested.....................26
comments, problems with........25
comments: /*, #, //....................25
Compiler.................................124
compress, LZO.......................320
Compression.................................

example..............................321
LZO...................................320

 345

Index

threaded example...............325
ZLib...................................322

Compressor, ZeeLib...............322
concat, List.............................189
connectTo, TCPClientSocket. 205
Console...................................129
const.......................................315
constants, string......................233
container, Class.......................112
container, Fcn.........................158
contents, Vault........................288
control.....................................309
cook, Class..............................112
Cookie Monster, Pipe.............262
copy..

Class...................................106
Data....................................131
Dictionary..........................148
Fcn.....................................156
Float...................................172
Int.......................................181
List.....................................189
Object.................................215
ROList...............................228
String.................................234

Coroutines..............................278
cos, Float................................174
cosh, Float..............................174
counts...

String.................................235
cproduct, Walker.....................299
create..

AtomicBool.........................97
AtomicInt.............................99
AtomicLock (Lock)...........101
Bool...................................105
Class...................................106
Data....................................131
Deferred.............................143
Dictionary..........................148
File.....................................163
Float...................................172
Int.......................................181
List.....................................189
Object.................................215
Pipe....................................257
Property.............................223

RegExp..............................224
ROList...............................228
String.................................235
Void....................................298
Walker................................300
WriteLock..........................101
ZeeLib................................322

createFiber, VM......................291
createLong, List......................190
creation...

Class...................................120
Fcn.....................................160

critical.......................................35
ctime, Time.Date....................270
cursor, Data.............................138
cwd, System...........................247
cycle, Walker..........................300
Data..130
Date..269
dayName, Time.Date..............270
daysInMonth, Time.Date........270
daysInYear, Time.Date...........270
dec, AtomicInt..........................99
decompress, LZO...................320
default parameters....................42
defaultArgs, Fcn.....................158
defer..

Class...................................106
Fcn.....................................156
Method...............................202

Deferred..................................143
degrees, Float.........................173
del...

Data....................................131
Dictionary..........................149
List.....................................190
String.................................235

delegation classes...................119
delete, File..............................166
device drivers.........................335
DevNull, File..........................171
Dictionary...............................148
Dictionary, small....................229
dir, Object...............................215
dir, Vault.................................288
Disassembler..........................123
divr,Int....................................181

DLLs.......................................246
do..38
do while....................................38
drain, ZeeLib..........................323
DrainPipe, Thread..................255
drop, Walker...........................300
e, Float....................................174
else, if.......................................50
embryo, Class.........................110
empty, Pipe.............................259
enum, C like.............................32
enumerate...............................183

Walker................................302
zipWith..............................285

environment variables..............86
eof, File...................................170
Eve, class..................................17
events..................................95, 98
Exception................................151

payloads.............................154
verification.........................154

Exceptions....................................
AsmError...........................152
AssertionError...................152
BadDay..............................152
CompilerError....................152
FcnNotImplementedError..152
Generic...............................152
HeyYou..............................152
IndexError..........................152
IOError...............................152
KissOfDeath......................151
LoaderError.......................152
MathError..........................152
MissingArg........................152
Msg....................................152
NameError.........................153
NotFoundError...................153
NotImplementedError........153
OSError..............................152
OutOfMemory...................152
PipeError............................153
StreamError.......................153
SyntaxError........................153
TheEnd...............................153
Timeout..............................153
TypeError...........................153

346 Index

Index

ValueError..........................153
VMError............................152

exists, File...............................166
exit, System............................245
exp, Float................................174
expression...............................308
extend, Dictionary..................149
extend, List.............................190
f, Deferred..............................144
Factorial..................................328
fallthrough....................................

foreach.................................49
switch...................................70
try...75
while....................................84

False.......................................105
Fcn....................................39, 156
fcn names, special....................40
fcns, Class...............................112
fcomp: Function composition.278
fibers, VM..............................294
File..163
File/Class name mapping.......180
fileName, File.........................170
fill, Data..................................131
filter..

Data....................................131
Dictionary..........................149
File.....................................166
Int.......................................181
List.....................................196
Notes on...............................91
Pipe....................................257
String.................................235
Walker................................300

filter1..
Dictionary..........................149
Int.......................................182
List.....................................196
Walker................................300

filter1n, List............................196
filter22..

List.....................................196
Walker................................300

filterNs, List...........................197
find...

Data....................................131

Dictionary..........................149
List.....................................190
String.................................235
Vault...................................288

findString, Data......................132
flatten, List.............................190
Float..172
floor, Float..............................172
flush..

Console..............................129
Data....................................132
File.....................................163
List.....................................194
Pipe....................................257
ZeeLib................................323

fmt, String...............................235
foreach......................................48
formatting, String...................242
fp, Object................................216
fp1, Object..............................216
fp2, Object..............................216
fpM, Object............................217
fpN, Object.............................216
frexp, Float.............................174
fullName.......................................

Class...................................112
Fcn.....................................159
Object.................................219

Function composition.....216, 278
functions, class.........................16
future..

Fcn.....................................156
Method...............................202

garbage collection..................177
GarbageMan...........................177
Gaussian distribution..............176
Generator................................336

fiber....................................295
Generator, Utils......................277
gerber, Utils.Helpers...............278
get...

Data....................................132
Dictionary..........................149
List.....................................190
String.................................235

getenv, System........................245
glob, File.................................166

glob, String.............................235
globular, File...........................167
go, HeartBeat..........................256
goto, using throw......................73
gzip...322
hasData, Pipe..........................259
HeartBeat, Thread..................255
Here Doc: #<<<........................27
Hex Dump..............................326
holds...

Dictionary..........................149
List.....................................190
String.................................235
Vault...................................288

hostAddr, TCPClientSocket. . .206
hostname, System...................247
hostName, TCPClientSocket..206
hostname, TCPServerSocket. .211
howza...

Data....................................132
Dictionary..........................149
File.....................................163

httpDate, Time.Date...............270
hypot, Float.............................172
id, Object................................219
idFcn, Fcn...............................159
if else..50
Import.....................................179
Import.lib................................179
inc, AtomicInt...........................99
includePath, System...............247
inCommon, String..................235
incV, Dictionary......................149
index...

Data....................................132
List.....................................191
String.................................236

Inflator, ZeeLib.......................322
info, File.........................163, 168
inheritance....................................

class.....................................19
Walker................................307

init fcn......................................17
inlineCursor, Data...................132
insert...

Data....................................133
List.....................................191

 347

Index

String.................................236
instance...................................308

class.....................................16
Method...............................202
Property.............................223

Int, Integers.............................181
isBroken, Pipe........................259
isChildOf, Class.....................106
isChildOf, Object...................217
isClassified, Class...................113
isClosed..

Pipe....................................259
TCPClientSocket...............206
TCPServerSocket...............211
ZeeLib................................324

isCooked.......................................
Class...................................113
Deferred.............................144

isDead, VM............................292
isDead, WeakRef....................177
isDir, File................................168
isEmpty, Pipe..........................259
isEve, Class.............................113
isEven, Int...............................185
isFiber, VM.............................292
isInstanceOf..................................

Class...................................106
Fcn.....................................157
Object.................................217

isLeapYear, Time.Date...........270
isListening, TCPServerSocket211
isLocked, Lock.......................101
isOdd, Int................................185
isOpen, Pipe...........................259
isPartial, Deferred...................144
isPrivate, Class.......................113
isPrivate, Fcn..........................159
isReadOnly...................................

List.....................................200
ROList...............................228
Thread.List.........................256

isRunnable, Fcn......................159
isRunning, VM.......................292
isScript, Class.........................113
isSet..

AtomicBool.........................97
AtomicInt.............................99

WriteLock..........................102
isSpace, String........................236
isStatic, Class..........................113
isStatic, Fcn............................159
isThread, VM..........................293
isThreadSafe.................................

List.....................................200
ROList...............................228
Thread.List.........................257

isType, Object.........................217
isUnix, System.......................247
isWindows, System................247
keys, Dictionary.....................150
kick, VM.................................291
L, List.....................................189
lambda....................................310
Language................................187
late binding, Class..................119
launch fcn.................................17
launch, Class...........................107
launch, Fcn.............................157
len...

Data....................................133
Dictionary..........................149
File.............................163, 168
Int.......................................182
List.....................................191
Object.................................217
Pipe....................................257
String.................................236
TCPClientSocket...............205
UTF-8................................236
ZeeLib................................323

libPath, System.......................247
libraries, VM..........................293
library, importing....................180
license, Language...................187
liftoff fcn...................................17
liftoff, Class............................107
linearizeParents, Class............113
List..189
List assignment.........................82
List Comprehension. 53, 279, 339
List, Thread............................256
listen, TCPServerSocket.........210
listUnzip, Utils.Helpers..........279
Loader.....................................123

loadFile, System.....................245
loadFile2, System...................246
loadLibrary, System................246
localTime, Time.Clock...........268
Lock..100
log, Float.................................174
log10, Float.............................174
log2, Int..................................182
longest string, List..................200
loop...

do...38
foreach.................................48
while....................................84

LZO..320
makeReadOnly.............................

Dictionary..........................149
List.....................................191
ROList...............................228

matched, RegExp...................224
matchedNs, RegExp...............224
matches, RegExp....................224
matches, String.......................236
max, Float...............................172
MAX, Int........................182, 185
MD5, Utils..............................279
merge, List..............................197
Method...................................202
method, Object.......................217
methodName, Method............202
methods, Object......................219
min, Float...............................172
MIN, Int..........................182, 185
MinImport..............................204
minMax, Int............................182
minMaxNs, Int.......................182
mixin...................................80, 82
mkdir_p, File..........................168
mkdir, File..............................168
mktime, Time.Clock...............268
mktmp, File............................168
mode, Data.............................133
modf, Float.............................174
monthName, Time.Date.........270
monthRange, Time.Date.........270
name...

Class...................................113
Fcn.....................................159

348 Index

Index

Object.................................219
VM.....................................293

nested fcns................................43
next, Walker............................301
nextPowerOf2, Int..................185
noChildren, Attributes..............13
noChildren, Class...................116
noop, Object...........................218
normal distribution.................176
nthArg, VM............................291
nthClass, Class.......................107
nthDayInYear, Time.Date.......270
NullClass........................113, 121
nullFcn, Fcn............................159
num1s, Int...............................185
numArgs, VM.........................293
numDigits, Int.........................185
numThreads, VM....................293
Object.....................................215
once, Deferred........................144
onExit, corralling code.............55
Op...221
open..

Data....................................133
File.....................................163
Pipe....................................258
TCPServerSocket...............211
ZeeLib................................323

OS, System.............................247
otype, Object..........................219
pad, List..................................191
parameter................................309
parameters, fcn.........................41
parents, Class..................113, 116
parseDate, Time.Date.............271
Parser......................................125
parseTime, Time.Date............271
Partial.....................................146
partial function application.....216
pass by reference......................42
pasteArgs, VM........................291
path, Vault...............................288
peek, Walker...........................303
peekN, Walker........................303
pi, Float...................................175
Pipe example..........................261
Pipe picture.............................262

Pipe, Thread............................257
PolyGraph...............................229
pop..

Dictionary..........................149
pop, Data................................134
pop, List..................................191
popen, System........................246
port, TCPServerSocket...........211
pow, Float...............................173
precedence..............................316
prefix, String...........................237
prettyDay, Time.Date.............271
prime numbers........................338
print..

File.....................................164
print, Console.........................129
print, Object............................218
println...

File.....................................164
println, Console......................129
println, Object.........................218
Private.....................................315
properties, Object...................220
Property..................................223

Class...................................107
Int.......................................182
Object.................................218

property, Object......................218
protected.................................316
prototype, Fcn.........................159
proxy.......................................316
pump...

Data....................................134
Dictionary..........................149
File.....................................168
Int.......................................182
List.....................................197
Notes on...............................87
Pipe....................................258
RegExp..............................224
String.................................237
Walker................................301
ZeeLib................................323

push, List................................191
push, Walker...........................303
quick sort................................222
radians, Float..........................173

random, Float.........................173
random, Int.............................183
range, Utils.............................280
raw strings..............................234
read...

Data....................................134
File.....................................164
Pipe....................................258
TCPClientSocket...............205
Walker................................301
ZeeLib................................323

read1...
File.....................................164

readerRelease, WriteLock......102
readers, WriteLock.................103
readln..

Data....................................134
File.....................................164
Pipe....................................258

readNthLine, Data..................134
readString, Data......................135
reduce...

Data............................135, 149
File.....................................169
Int.......................................184
List.....................................197
Notes on...............................91
Pipe....................................258
Walker................................301

ref...
WeakRef............................177

Reference instance....................17
RegExp...................................224
registers, VM..........................293
regular expressions.................224
regX, VM................................293
release, Lock...........................101
remove, List............................191
removeEach, List....................192
rename, File............................170
replace, Data...........................135
replace, String.........................237
reset, Walker...........................301
resolve..

Class...................................107
Object.................................218
Vault...................................288

 349

Index

resume, VM............................291
return value, fcn........................40
reverse..

List.....................................192
ROList...............................228
String.................................238

rfind, String............................237
ROList....................................228
roman numbers.......................333
rootClass, Class......................114
rot13...............................234, 239
round, Float............................173
rules..

Data....................................139
List.....................................201
String.................................242

run, List..................................198
runMe fcn.................................17
runNFilter, List.......................198
runTime, Time.Clock.............268
scanl, reduce form....................92
script...

Attributes.............................13
Class...................................116
fcns.......................................43
Import................................180

search, RegExp.......................224
searchFor, File........................170
seek, Data...............................135
self..69
self.fcn......................................69
Semaphore..............................264
sequence, Data........................140
set...

AtomicBool.........................97
AtomicInt.............................99
Data....................................136
List.....................................192
ROList...............................228
String.................................238

setAndWait, Atomic...........93, 99
setAndWaitFor, AtomicBool....97
setIf, AtomicBool.....................97
setIf, AtomicInt.........................99
setModTime, File...................170
setVar, Class...........................109
shared libraries.......................246

Shell..231
shiftLeft, Int............................184
shiftRight, Int.........................184
shuffle, Data...........................136
shuffle, List.............................199
side effects, thread....................23
sign, Float...............................175
sign, Int...................................185
sin, Float.................................174
sinh, Float...............................174
sink, Walker............................301
sleep, Atomic............................93
Small Dictionary....................229
sort..

String.................................238
sort, List..................................199
sort, ROList............................228
span, String.............................238
special characters....................233
special fcns, class.....................16
splashdown fcn.........................17
splashdown, Class..................107
split, Int...................................184
split, String.............................238
splitFileName, File.................170
sqrt, Float................................173
stackTrace, VM......................292
static...

Attributes.............................13
Class...................................116
classes................................118

stats, GarbageMan..................177
stderr, File...............................171
stdin, File................................171
stdout, File..............................171
strand, Fcn..............................157
stranded, Fcn..........................157
Straw, Thread..........................265
StrawBoss, Thread..................265
stream, Data............................141
String......................................233
string constants.......................233
String, formatting...................242
strip, String.............................239
subYMD, Time.Date..............271
Sugar...8

ask..11

print......................................60
'wrap..................................146

sum, List.................................199
swap, List...............................192
switch.......................................70
syntax, RegExp.......................225
System....................................245
T, ROList................................228
tail...

List.....................................192
String.................................239

tail calls....................................46
tail recursion.............................45
tan, Float.................................174
tanh, Float...............................174
TCP terminal server................213
TCPClientSocket....................205
TCPServerSocket...................210
testing...

testThemAll.......................249
UnitTester..........................252

testRun, UnitTester.................252
testSrc, UnitTester..................252
testThemAll............................249
text..

Data............................138, 185
String.................................240

theInitFcnIs, Class..................114
TheVault.................................287
thread safety, Fcn....................160
thread-safe................................87
threads..

class.....................................21
VM.....................................294
waiting for............................22

throw...72
goto replacement..................73

tickToTock, Time.Clock.........268
time, Time.Clock....................268
timef, Time.Clock...................269
timeouts, Pipe.........................260
Timer, Thread.........................267
timeZone, Time.Clock............269
to24HString, Time.Date.........271
toAMPMString, Time.Date....271
toAsc, String...........................239
toBigEndian, Data..................136

350 Index

Index

toBigEndian, Int.....................184
toBool...

Class...................................109
Console..............................129
Data....................................136
Deferred.............................144
Dictionary..........................150
Fcn.....................................158
File.....................................165
Float...................................173
Int.......................................184
List.....................................192
Object.................................219
Pipe....................................258
String.................................239
System...............................247
TCPClientSocket...............206
TCPServerSocket...............211
Void....................................298

toChar, Int...............................184
toData...

List.....................................192
Object.................................219
String.................................239

toDeg, Float............................173
toDictionary..................................

Dictionary..........................150
List.....................................192

toFloat...
Bool...................................105
Date....................................271
Int.......................................185
Object.................................219
String.................................239

toHMSString, Time.Date........271
toHour, Time.Date..................271
toInt..

Bool...................................105
Float...................................173
Object.................................219
String.................................239

Tokenizer................................127
toList...

Data....................................137
Dictionary..........................150
List.....................................193
Object.................................219

toLittleEndian, Data...............137
toLittleEndian, Int..................185
toLower, String.......................239
topdog, Class..........................114
topdogs, Class.........................116
toPolar, Float..........................173
toRad, Float............................173
toRectangular, Float...............173
toString...

Bool...................................105
Data....................................137
Deferred.............................144
Dictionary..........................150
Fcn.....................................158
File.....................................165
Float...................................173
Int.......................................185
List.....................................193
Object.................................219
String.................................239
VM.....................................292
Void....................................298

toType, Object........................219
toUpper, String.......................239
toYMDString, Time.Date.......271
translate, String.......................239
trig methods, Float..................174
True..105
try...74
tryToSet, AtomicBool...............97
tweak, Walker.........................301
type...

List.....................................200
Object.................................220
ROList...............................228
Thread.List.........................257

unasm, Class...........................110
unasm, Fcn.............................158
unbind, Method......................202
unique characters....................241
unique, String.........................240
Unit Tests................................249
UnitTester...............................252
urlDecode.........................90, 301
usage, Argh.............................274
UTC, Time.Clock...................269
UTF-8, int.toString.................185

value...
AtomicBool.........................98
AtomicInt...........................100
Deferred.............................144
Lock...................................101
Property.............................223
WriteLock..........................103

values, Dictionary...................150
varBits, Class..........................114
variables.......................................

Class.....................................16
Constant...............................81
Fcn...............................43, 159
Proxy....................................83
Write once............................81

varNames, Class.....................114
vars, Class...............................114
Vault.......................................287
vaultPath, Object....................220
verifyWad, Wad......................282
version, Language..................188
virtual classes..........................117
VM, Virtual Machine.............290
vms, VM.................................293
Void..298
Void.Again................................88
Void.Filter.................................88
Void.Read.................................89
Void.Skip..................................89
Void.Stop..................................89
Void.Write................................89
Void.Xplode..............................88
Wad, Utils...............................281
wadToC, Wad.........................282
wait...

Atomic.................................94
AtomicBool.........................97
for Fcn..................................96
for Method...........................95
for multiple..........................96
Pipe....................................258
TCPClientSocket...............206

waitFor...
Atomic.................................94
AtomicBool.........................98
AtomicInt.............................99

walk, Walker...........................302

 351

Index

walker...
Data....................................137
Dictionary..........................150
File.....................................165
Int.......................................185
List.....................................193
Pipe....................................259
String.................................240
Walker................................302
ZeeLib................................324

wap...138
wap, Utils...............................284
WeakRef, GarbageMan..........177
web server....................................

TCPClientSocket...............207
toy......................................341

week01, Time.Date.................272
weekDay, Time.Date..............272
weeksInYear, Time.Date.........272
whatIsThis, Class....................110
while...84
whyBroken, Pipe....................259
wrap, Deferred........................146
write..

Console..............................129
Data....................................138
Dictionary..........................150
File.....................................165
List.....................................194
Pipe....................................259
TCPClientSocket...............206
ZeeLib................................324

writeln...
Console..............................129
Data....................................138
File.....................................165
List.....................................194
Pipe....................................259

WriteLock...............................101
WriteLock picture...................104
writerRelease, WriteLock.......102
xplode, List.............................193
xxception, VM........................293
yield, VM................................292
ZeeLib....................................322
zero...

Walker................................303
zip...

List.....................................199
String.................................240
Utils...................................285
Walker................................303

zipWith...
List.....................................199
String.................................240
Utils...................................285
Walker................................303

ZSC...247
__*Walker..............................304
__constructor, Class................112
__DATE__..................................9
__DEBUG__..............................9
__FILE__...................................9
__LINE__...................................9
__NAME__................................9
__notFound, Class..................108
__TIME__..................................9
__VAULT_PATH......................10
_, list assignment......................83
_next, Walker..........................300
: (compose).............................311
:=...310
:=, register.................................63
'+, '-, '>, '!, '--, etc....................222
'wrap, Deferred.......................146
[]: Range..................................61

[[]]: list comprehension...........53
[] : __sGet.....................................

Class.............................17, 109
Data....................................136
Dictionary..........................150
List.....................................192
Object.................................219
String.................................238

[] = : __sSet..................................
Class.............................17, 109
Data....................................136
Dictionary..........................150
List.....................................192
Object.................................219

/* comments.............................25
// comments..............................25
comments..............................25
#! shell script comment............26
#<<<...27
#<<<#.......................................27
#define......................................26
#fcn...26
#if...26
#ifdef..27
#text..27
#tokenize..................................27
=..310
==, +, !, etc...................................

Bool...................................105
Class...................................114
Data....................................138
Float...................................175
Int.......................................186
List.....................................200
Object.................................220
String.................................240
VM.....................................294
Void....................................298

352 Index

	The Young Person's Guide to zkl
	Getting Started
	Data Things: Numbers, Strings, etc
	Branching
	Loops
	Functions
	Classes
	Scope
	The zkl Shell
	Shared Libraries
	Concept to Topic Mapping

	Keywords
	Names
	Keywords
	Reserved Words
	Syntactic Sugar

	__<name>
	AKA
	ask
	assert
	Attributes
	break
	class
	Special Functions
	Inheritance
	Anonymous Classes
	Supporting Subscripts
	Threading
	Side Effects

	comments: #, //, /* */, #define, #if, #ifdef, #text, #tokenize
	const
	continue
	critical
	Non-Locking Uses

	debug
	do
	fcn
	Return Value
	Anonymous Functions
	Nested Functions
	Tail Recursion
	Tail Calls
	Functions are not Closures

	foreach
	if else
	include
	[[]] (List Comprehension)
	onExit
	pimport (packaging)
	print, println
	[] (Range)
	reg
	return
	Multi-valued Return

	returnClass
	self
	switch
	throw
	Wishing for Goto

	try/catch
	var
	Scope
	Constant (Write Once) and protected Variables
	List assignment
	Proxy Variables

	while

	Objects
	Environment Variables
	Names
	What thread-safe and not thread-safe mean
	Notes on the Pump Method
	Notes on the apply and filter methods
	Notes on the reduce method
	Atomic
	Simple Waits: Events
	Waiting for a Method
	Waiting for a Function
	Waiting for Multiple Objects

	Atomic.Bool
	Events

	Atomic.Int
	Atomic.Lock
	Atomic.WriteLock
	Bool
	True and False

	Class
	Class Attributes
	Parent Classes and Top Dogs
	Static Classes
	Late Binding
	Delegation
	Dynamic Class Creation
	The Null Class

	Compiler
	Compiler.Asm
	Loader
	Disassembler Functions

	Compiler.Compiler
	Compiler.Parser
	Compiler.Tokenizer
	Console
	Data
	Sequence Example: String Tables
	Stream Example: Code Containers

	Deferred
	Dictionary
	Exception
	Fcn
	Thread Safety
	Function Creation

	File
	Utility Methods

	File.DevNull
	Float
	GarbageMan
	Weak References

	Import
	Int
	Language
	List
	Stream methods
	Utility Methods

	Method
	MinImport
	Network.TCPClientSocket
	Example: Connect to a Web Server

	Network.TCPServerSocket
	Talking to a Terminal

	Object
	Op
	Property
	RegExp
	ROList
	Small Dictionary, PolyGraph
	startup
	String
	Formatting

	System
	Test
	Test.testThemAll
	Options

	Test.UnitTester
	Thread
	Thread.DrainPipe
	Thread.Heartbeat
	Thread.List
	Thread.Pipe
	Thread.Semaphore
	Thread.Straw
	Thread.StrawBoss
	Thread.Timer
	Time
	Time.Clock
	Time.Date
	Utils
	Utils.Argh
	Utils.BlackHole
	Utils.Generator
	Coroutines

	Utils.Helpers
	Utils.MD5
	Utils.range
	Utils.Wad
	Utils.wap
	Utils.zip
	Utils.zipWith
	Vault and TheVault
	VM
	Threads
	Fibers

	Void
	Walker

	Appendix A: zkl Grammar
	Concepts
	Keywords
	Comments
	Data Reference Resolution
	Attributes: const, private, protected, proxy
	Expressions
	Scoping

	Appendix B: Additional Objects
	Utils.Compression.LZO
	Utils.Compression.ZeeLib

	Appendix C: Illustrated zkl Code Examples
	Hex Dump
	Factorial
	Processing Text Files with Scripts and Pipes
	Roman Numbers
	Device Drivers
	Generators
	Sequence/List Comprehension

	Appendix D: A Toy Web Server
	Index

