
Appendix C: Illustrated zkl Code Examples

Appendix C: Illustrated zkl Code Examples
Appendix C: Illustrated zkl Code Examples.......................................1

Hex Dump...1
Factorial...3
Processing Text Files with Scripts and Pipes..5
Roman Numbers..9
Device Drivers...11
Generators..12
Sequence/List Comprehension..14

Hex Dump

For programmers, a hexadecimal dump usually represents the back up against the wall: “What
the *&%^ is this program doing?!?” and is like looking at chicken entrails. Unpleasant, yes, but
none the less, you'll usually have to do it at some point.

>zkl hexDump Built/exception.zsc
 0: 20 20 7a 6b 48 00 00 24 | 31 2e 30 00 5a 4b 4c 20 zkH..$1.0.ZKL
 16: 53 65 72 69 61 6c 69 7a | 65 64 20 43 6c 61 73 73 Serialized Class
 32: 00 45 78 63 65 70 74 69 | 6f 6e 00 00 02 00 00 45 .Exception.....E
 48: 2b 61 74 74 72 69 62 75 | 74 65 73 3a 73 74 61 74 +attributes:stat
...

The above dump is an excerpt of a ZSC file dump. From this, you could verify that
Asm.WriteRootClass is working correctly.

Code
fcn hexDump(in, out = File.stdout){
 format1 := "%02.x ";
 format16 := format1 * 8 + "| " + format1 * 8;
 NFmt := "%4d: ";

 reg bytes,text, N = 0, d = Data();
 try {
 while(1){ // repeat until end of file
 bytes = in.read(16).bytes();
 text = bytes.reduce(fcn(d,c)
 { d.append(if (0x20 <= c <= 0x7E)

c.toChar() else ".")},
 d.clear()).text;
 out.writeln(NFmt.fmt(N),
 format16.fmt(bytes.xplode())," ",text);
 N += 16;
 }
 }

1

Appendix C: Illustrated zkl Code Examples

 catch(MissingArg) { // not a full line
 n := bytes.len();
 if (n <= 8)

 out.write(NFmt.fmt(N),(format1 * n)
 .fmt(bytes.xplode())," ");
 else
 out.write(NFmt.fmt(N),
 (format1 * 8 + "| " +
 format1 * (n-8)).fmt(bytes.xplode()));
 out.writeln(" "*(16-n), " ",text);
 }
 catch(TheEnd) {}
}

Discussion
The code is dense.

The first thing to note is the prototype: hexDump(in, out = File.stdout)
Hex dump reads from an input stream (such as a File or Data) and writes to an output stream,
which defaults to the console (or whatever the console has been redirected to). Thus, it is
simple to create a script that dumps a file:
 Attributes(script);
 f := File(vm.arglist[0],"rb");
 hexDump(f);
This opens the file in binary mode and lets hexDump have at it. It would be even easier to do
this:
 hexDump(File.stdin);
But, on windows, if there is a control-Z in the file (common in a binary file), windows will treat
that as an End of File marker and close the file, which is not what we want.

Read Bytes
First, we read sixteen bytes at a time from the input stream:
 in.read(16).bytes(); → Data(16) to List of 16 integers
The thing to note here is, if there are less than sixteen bytes available, read will read what is
available. When there are no bytes available, read will throw TheEnd, which we catch. Thus,
we process all bytes, even if the file doesn't contain a multiple of sixteen.

Print Bytes
Each line of sixteen bytes is written as two hex characters, a space, the next byte, etc, followed
by the the bytes as text (printable characters only). The line is split into two groups of eight
bytes for ease of readability. The text format for a byte is “%02x “ or “%02.16B ”; two hex
digits (with leading zero if only one digit). By multiplying this string by eight, it is repeated
eight times to give one group. Using this resulting string as a format, we explode the list of
bytes so they become parameters to .fmt. For example: if bytes is L(8,9,10) and format is
“%02x %02x | %02x”, then

2 Appendix C: Illustrated zkl Code Examples

Appendix C: Illustrated zkl Code Examples

 format.fmt(bytes.xplode())
 → "%02x %02x | %02x".fmt(L(8,9,10).xplode())
 → "%02x %02x | %02x".fmt(8,9,10)
 → “08 09 | 0a”

Print Text
Next, we need to write the bytes as text. We'll define a printable character as one that is
between space (0x20) and tilde (~, 0x7E). If the byte isn't printable, substitute a dot. The
problem is how to convert a list of bytes or bunch of bytes to printable characters. The idea is to
examine each byte and build a string with the printable representation of that byte. We can do
this using List.reduce as a data pump; each byte is converted to printable (by a function) and
then appended to the previous characters. Any of a number of objects can be used; String, Data,
Pipe, etc. We'll use Data out of a (probably misguided) sense of efficiency. Here are the steps:
 1. fcn toPrintable(c)

 { if (0x20 <= c <= 0x7E) c.toChar() else "." }
This function takes an integer and returns a printable character. Note that we can do the
comparison without using “and”.

 2. fcn append(data,c) { data.append(toPrintable(c)); }
This will append the printable character to a Data.

 3. d = Data(); text = bytes.reduce(append, d.clear());
Here we walk each byte, convert it and append it to a Data. The Data is returned. D is
cleared each time so we can reuse it.

 4. text = text.text;
And finally!, the printable text is extracted from the Data.

And to show that we are really cool programmers, all these steps are packed into one very long
statement.
If you prefer to work with Strings, lines 2 and 3 would become:
 fcn append(str,c) { str + toPrintable(data,c); }
 text = bytes.reduce(append,"");
and line 4 is eliminated.

Partial Lines
And lastly, we have to handle partial lines (those will less than 16 bytes). We know when that
happens because fmt will throw a MissingArg if it doesn't have sixteen bytes to format. We
catch that and deal with one of two cases: eight bytes or less (one group) or two groups. Since
we know that fmt threw the error, we also know that bytes and text are valid (as they were
calculated before the error occurred).

Factorial

The classic recursive factorial program can be written in a clever way. We'll actually look at
cleverness inside of clever, just to to be clever. A factorial program is written four ways.

Code
 1. fcn fact(n){ return(n and n*fact(n-1) or 1); }

Appendix C: Illustrated zkl Code Examples 3

Appendix C: Illustrated zkl Code Examples

 2. fcn fact(n){ n and n*self.fcn(n-1) or 1 }
Compare to:
 3. fcn fact(n){ // the recursive part. input: x output: x!

if (0==n) return(1); // 0! = 1
return(n*fact(n-1)); // n! = n*(n-1)!
}

 4. fcn fact(n){
 if (0==n) 1;
 else n*fact(n-1);
}

 5. fcn fact(n){(1).reduce(n,fcn(N,n){N*n},1)}

Discussion
The first thing to note is that (1) and (2) are exactly the same. (2) is just lazy since it knows that
last calculation is the block result so it doesn't have to explicitly “return”. (3) is almost the same
as (4), (4) is actually a tiny bit bigger (two bytes) but the compiled code is essentially the same.
(5) is just a loop using a lambda function.

So, how does it work? First, both programs are only valid for non-negative integers and the
results get huge very fast so there is a fairly low limit on those integers before overflow occurs.
With that out of the way, we can perform an examination. We'll do this the old fashioned way:
plug and grind.

1. fact(0) → return(0 and 0*fact(0-1) or 1) → return(False or 1) →
return(1)
The key here is and/or. 0 is equivalent to False (0.toBool() is False) and (False and
X) is False, so 0*fact(0-1) is never evaluated and the “or” clause is the winner.

2. fact(1) → return(1 and 1*fact(1-1) or 1) → return(True and fact(0)) →
return(fact(0)) → return(1)
Here, 1 is equivalent to True and (True and X) is X so the “or” clause is ignored
(assuming that X is non-zero, which we know to be true in this case).

3. fact(2) → return(2 and 2*fact(2-1) or 1) → return(True and 2*fact(1)) →
return(2*fact(1)) → return(2*1) (substituting 2) → return(2)
Basically the same as 2, noting that 2.toBool() is True and using the result obtained in
2. The program performs steps 3, then 2, then 1 (which is why it is recursive) but we've
wave our hands here and save some brain cells.

4. And so on for other integers.

What does the compiler think of this cleverness? Not much, the compiled code is all of two
bytes smaller than the more legible code.

But Wait! There's More
 fcn factTail(x,N=1) {
 if (0 == x) return(N);
 return(self.fcn(x - 1,x * N));
 }
 factTail(7) → 5040

4 Appendix C: Illustrated zkl Code Examples

Appendix C: Illustrated zkl Code Examples

The code is longer and isn't as “pretty”. But! it doesn't recurse. That's right, the compiler
converts this into an iterative function though the magic of tail recursion. The generated code
becomes something like this:
 fcn factTail(x,N=1) {
 if (0 == x) return(N);
 x -= 1; N *= x;
 goto factTail;
 }

What about integer overflow? factTail(100) → 0 so something is clearly wrong. Let's use
infinite precision integers to avoid this problem:
 BigNum := Import("zklBigNum");
 factTail(BigNum(100))
 → 93326215443944152681699238856266700490715968264381621

46859296389521759999322991560894146397615651828625369
7920827223758251185210916864000000000000000000000000

Processing Text Files with Scripts and Pipes

zkl can be used to process text files in a manner somewhat analogous to Perl but not as
concisely and with a different “flow”.
In this this example, the goal is to convert a look up table written in C to a gperf hash table. The
command line will look like:
 >zkl extractTable < list.c | gperf | zkl gperf -i list
There are two zkl scripts (extractTable.zkl and gperf.zkl) that are used; one to extract the table
from C code and prep it for gperf and the other to post process the gperf output. gperf
(http://www.gnu.org/software/gperf/) is the GNU perfect hash table generator. gperf hash tables
are used by the zkl VM but gperf produces C code that needs to be modified so that it can be
compiled into the VM.

Examples of Text
From list.c (over 4,000 lines of C with five tables):
 static Instance *
 List_makeReadOnly(Instance *self, pArglist arglist, pVM vm) {
 return convertToROList(self);
 }
 static const MethodTable listMethods[] =
 {
 "create", List_create,
 "toString", List_toString,

// utility methods
 "makeReadOnly", List_makeReadOnly,
 0, 0
 };
What gperf wants to see the above transformed into:

MethodTable
%struct-type
%language=ANSI-C
%readonly-tables
%delimiters=,

Appendix C: Illustrated zkl Code Examples 5

http://www.gnu.org/software/gperf/

Appendix C: Illustrated zkl Code Examples

%enum
%omit-struct-type
%%
"create", List_create,
"toString", List_toString,
"makeReadOnly", List_makeReadOnly,

We'll skip the two gperfs; their output is copious and extraneous for this example.

Code
//-*-c-*-
/* extractTable.zkl: Extract a Method or Property table
 * from a C file and convert it to gperf format
 */
Attributes(script); // (1)

var structname = "MethodTable";
var name = "";

Import("Utils.Argh")(// (2)
L("propertyTable","p","Extract a property table",
 fcn { structname = "PropertyTable" }),
L("methodTable", "m","Extract a method table (default)", fcn {}),
L("+name", "n","The name of the table", fcn(arg) { name = arg }),
).parse(vm.arglist);

walker := File.stdin.walker(); // (3)
//cFile := File.stdin.readln(*); // (4)
//walker := cFile.walker();

 // Match "MethodTable ???[] = " or
 // "MethodTable methodTable[] = "
tableName := "*%s*%s\\[]*=*".fmt(structname,name); // (5)

try { // look for: MethodTable methodTable[] = // (6)
 while (not walker.next().matches(tableName)) {}
 walker.next();
}
catch(TheEnd) {
 File.stderr.writeln("Extract: Didn't find ",name);
 System.exit(1);
}

6 Appendix C: Illustrated zkl Code Examples

Appendix C: Illustrated zkl Code Examples

println(// (7)
structname,"\n",
"%struct-type\n",
"%language=ANSI-C\n",
"%readonly-tables\n",
"%delimiters=,\n",
"%enum\n",
"%omit-struct-type\n",
"%%");

while (not (line := walker.next().strip()).matches("0,*0")){ // (8)
 if (not line or line.matches("//*")) continue;
 println(line);
}

Discussion
This code is very linear:

1. Make it clear to everybody (from the user to the compiler) that this is a script.
2. Parse the command line options to find out what table to look for.
3. Create a way to read the file a line at a time.
4. Another way to read the file: read the entire C file into a list and read from that list.
5. Create a search pattern
6. Find the table.
7. Write the gperf header.
8. Read the table, modify it to gperf format and write it.

You might be wondering why “.zkl” isn't specified on the command line
>zkl extractTable < list.c | gperf | zkl gperf -i list

for extractTable.zkl or gperf.zkl. This isn't a typo, the zkl shell will look for “.zkl” and “.zsc”
files and also search the vault.

In Depth:
1. The script attribute isn't necessary in this case but it does make it clear what the intent

of this code is.
2. Use the Argh class to parse the command line. Standard stuff. If an option is found

(--propertyTable, --methodTable, or --name), a function is called to deal with it. If there
is an error, Argh throws an exception and VM exits with a non-zero value, which breaks
the pipe line.
 >zkl extractTable -X < list.c | gperf | zkl gperf
 Unknown option: X
 Options:
 --methodTable (-m) : Extract a method table (default)
 --name (-n) <arg>: The name of the table
 --propertyTable (-p) : Extract a property table
 VM#32 caught this unhandled exception:
 NameError : Unknown option: X
 Stack trace for VM#32
 ...
 (standard input): The input file is empty!

Appendix C: Illustrated zkl Code Examples 7

Appendix C: Illustrated zkl Code Examples

Import("Utils.Argh")(optionParameters).parse(cmdLineArgs)
Import searches for the named class (Argh), creates a copy and calls the init function
with parameters. The parse method/function of the new Argh instance is then called
with the command line args. How is the command line converted into the arglist? Since
a script is basically a class constructor and constructors don't have a named parameter
list, the relevant parts of argv are copied to vm.arglist.
The option parameters describe each possible command line option. Each is a list: long
name (with a “+” if a argument is required), short name, description and optional
function.

3. This line is the key to this script. We explicitly create a Walker so we can process the
file at our pace (rather than implicitly via foreach). Doing this allows us to structure our
look at the file in way better suited to our needs.

4. (2) isn't the only way to do this, it isn't even the only other way. If we needed to edit the
file (delete, add and modify lines, as gperf.zkl does), reading the entire file into a list of
lines and using a walker on that works well; the walker also acts as a “cursor” into the
file.

5. Since the table name isn't hard coded, we have to create the search pattern on the fly.
We want to be a bit clever about this and not require a table name be specified. If we are
looking for a method table (the default), structname is “MethodTable”. Our two patterns
are:
 "*MethodTable*\[]*=*"
Or, if a name is specified (eg “listMethods”):
 "*MethodTable*listMethods\[]*=*"
Both these patterns will match
 "static const MethodTable listMethods[] ="

6. Here we step through the file. We look at each line until one matches the pattern we are
looking for. If we find it, we skip the next line (“{“) and go to the next step. If we search
the entire file and don't find a matching line, walker throws TheEnd. We could leave it
at that but the user would probably be at a loss to figure what the hell went wrong. So
we catch the exception and print a more meaningful error to standard error:
>zkl extractTable -n fooMethods < list.c | gperf | zkl gperf

Extract: Didn't find fooMethods
(standard input): The input file is empty!

7. Nothing special here, just print a gperf header to standard out. Each gperf declaration
needs to be on a separate line, so “\n” (newline) is used in println to specify that.

8. Walk the rest of the table, until the end of the table is reached.
The end of the table is marked by a line that is “0,0”, so we can stop when we find it.
There is a lot going on in the while line. First, the line is read, leading and trailing space
is stripped from it and it is stored in the “line” register. If line is “0,[space]0”, it is the
end of the table and the string matches method will return True. Note, if the line is
“0,0,” (trailing comma, a valid terminator for a C array initializer), this will miss it.

We don't want to send blank or comment lines to gperf (it doesn't like them) so we skip
them. Since we stripped out white space, a blank line is “” (which has zero length,
which is what not tests for in strings). A comment line is a C++ style comment on a

8 Appendix C: Illustrated zkl Code Examples

Appendix C: Illustrated zkl Code Examples

blank line (“ // comment”) (a convention I force for tables, comments at the end of a
non-blank line is fine). If the line matches either of these conditions, skip that line.

Otherwise, just print the table line.

Roman Numbers

Ever consider how cool it would be to write
 Roman.CCXX + Roman.XLII → CCLXII(262)
Well, you can! If you can solve this problem: how to do you get a class to meaningfully deal
with a method/fcn/etc that is unknown at compile time? In this case, it makes absolutely no
sense to have a fcn/variable for every possible roman numeral, so there needs to be another way
for the Roman class to accept an arbitrary roman number. The normal way would be to write
Roman(“CCXX”) but, for this example, we want to write Roman.CCXX. The solution is use
late binding to redirect the unknown method references. Most dynamic languages offer support
for this in some way, shape or form. For example, Ruby has the “method_missing” method.
This idea for this example came from Ruby Quiz #22, “Roman Numerals”.

Code
 var Roman = RomanNumber;

Yes, that's it. Aside from the RomanNumber class, which is a run of the mill boring class. In
use:
 var Roman = RomanNumber; // Force late binding
 println(Roman.CCXX); → “CCXX(220)”
 r := Roman.XLII; println(r); → “XLII(42)”
 println(Roman.CCXX + Roman.XLII); → “CCLXII(262)”
 println(Roman.XL + 2); → XLII(42)
 Roman.IA; → ValueError
 println(RomanNumber.toRoman(42)); → “XLII”

How It Works
Just what is the man behind the curtain doing to make this work? First, we can't let the compiler
statically bind to the RomanNumber class, so we store it in a variable, which will force the
compiler to use late binding. Next, we link into the “method not found” method, which the VM
uses to resolve something that can't be found. When we write Roman.CCXX, the compiler turns
this into RomanNumber.resolve("CCXX"), which isn't in RomanNumber, so the VM calls
RomanNumber.__notFound("CCXX").

For extra credit, what does Roman.CCXX("II") do? How about Roman.CCXX.II? If you
answered 2 and 2, you are correct. If you know why, pat yourself on the back.

More Code
Here is the code for the RomanNumber class. It is a quick hack in every sense of the word,
written solely to explore, so tread carefully if you want to use it for more than that. It is
basically a port, with garnish, of Jason Bailey's solution to the Ruby Quiz #22.

Appendix C: Illustrated zkl Code Examples 9

Appendix C: Illustrated zkl Code Examples

var romans = L(// a list of lists
 L("M", 1000), L("CM", 900), L("D", 500), L("CD", 400),
 L("C", 100), L("XC", 90), L("L", 50), L("XL", 40),
 L("X", 10), L("IX", 9), L("V", 5), L("IV", 4),
 L("I", 1));

class RomanNumber {
 var value, text;
 // create a new instance so we can add two Roman numbers
 fcn __notFound(name) { return(self(name)); }
 fcn init(text) {
 self.text = text;
 value = toArabic(text);
 }

 // romanNumber needs to be upper case
 fcn toArabic(romanNumber) {
 if (not RegExp("^[CDILMVX]+$").matches(romanNumber))
 throw(Exception.ValueError("Not a Roman number: %s"

.fmt(romanNumber)));
 reg value = 0;
 foreach R,N in (romans) { // eg "C",100
 while (0 == romanNumber.find(R)) {
 value += N;
 romanNumber = romanNumber[R.len(),*];
 }
 }
 return(value);
 }

 fcn toRoman(i) { // convert int to a roman number
 reg text = "";
 foreach R,N in (romans)
 { z := i / N; text += R * z; i = i%N; }
 return(text);
 }
 fcn toString { return("%s(%s)".fmt(text,value)); }
 fcn toInt { return(value); }
 fcn __opAdd(R) { self(toRoman(value + R.toInt())) }
}

Since toArabic and toRoman are probably not obvious, here are some hints.
toArabic("XLII"):

R = "M", N = 1000, value = 0, romanNumber = "XLII"
R = "CM", N = 900, value = 0, romanNumber = "XLII"
…
R = "XL", N = 40, value = 0, romanNumber = "XLII"
R = "X", N = 10, value = 40, romanNumber = "II",
…
R = "I", N = 1, value = 40, romanNumber = "II"
R = "I", N = 1, value = 41, romanNumber = "I"
R = "I", N = 1, value = 42, romanNumber = ""

10 Appendix C: Illustrated zkl Code Examples

Appendix C: Illustrated zkl Code Examples

toRoman(42):
R = "M", N = 1000, z = 0, text = "", i = 42
…
R = "L", N = 50, z = 0, text = "", i = 42
R = "XL", N = 40, z = 1, text = "XL", i = 2
R = "X", N = 10, z = 0, text = "XL", i = 2
…
R = "IV", N = 4, z = 0, text = "XL", i = 2
R = "I", N = 1, z = 2, text = "XLII", i = 0

Device Drivers

Device drivers. Ugh. They are always changing and you hate recompiling your code to add a
new driver. If you write to a “virtual” driver, one that every “real” device driver has to conform
to, you load can drivers at run time and not touch your “main” code.
Here is a (very simple) virtual driver:
 class VirtualDriver {
 var name = "VirtualDriver";
 fcn read(n) { println("Reading from ",name); }
 fcn write(x) { println("Writing to ",name); }
 fcn open { println("Opening ",name); }
 fcn close { println("Closing ",name); }
 }

And now, our code that writes to the hardware driver, plus a proxy class that insulates us from
the actual driver1:
 class Hardware {
 var [mixin] driver = VirtualDriver;
 fcn installDriver(driver){ self.driver = driver; }
 fcn doCoolThings {
 driver.open();
 driver.write("This is a test");
 driver.read(10);
 driver.close();
 }
 }
When we tell the hardware to do cool things, we get:
 hardware := Hardware();
 hardware.doCoolThings();
 → Opening VirtualDriver

Writing to VirtualDriver
Reading from VirtualDriver
Closing VirtualDriver

OK, now that we have the stub of our hardware controller, let's write a driver for the Gizmo 56
hardware, install and test it. We'll cheat and create the simplest driver possible:
 class GizmoDriver(VirtualDriver) {
 fcn init { name = "Gizmo56 driver"; }
 }

1 As we can't have dynamic parents.

Appendix C: Illustrated zkl Code Examples 11

Appendix C: Illustrated zkl Code Examples

Install a new instance of the driver in the existing Hardware instance and run another test:
 hardware.installDriver(GizmoDriver());
 hardware.doCoolThings();
 → Opening Gizmo56 driver

Writing to Gizmo56 driver
Reading from Gizmo56 driver
Closing Gizmo56 driver

This example shows that we can write our high level device controller and install device drivers
at run time. There are no recompiles, no relinking, no touching the controller. There is no need
to have any drivers resident at run time, once the device is queried or a configuration file is
read, the appropriate driver can be loaded and easily installed. You can even swap between
drivers on the fly.
The advantage to using a mixin var (vs a normal var) is that the compiler can check for invalid
method calls. For example, if the Hardware class were to call “driver.foo()”, the compiler
would flag this as a syntax error because foo isn't in VirtualDriver. If it wasn't a mixin, this
check would be punted to runtime.

Generators

Generators allow you to create iterators that rely on a continuing series of calculations or
recursion. For example, consider the following function to calculate prime numbers2.
fcn findPrimes{
 println(2); // vm.yield(2);
 n:=3; primes:=L(2);
 while(True) {
 if (not primes.filter1(fcn(p,n){n % p == 0},n))
 { // a new prime number has been found
 println(n); // vm.yield(n);
 primes.append(n);
 }
 n+=2; // Prime numbers (>2) are odd
 }
}
This will print an infinite list of primes:
 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 …
Which is nice but what if we want to use the primes for calculations? Enter Generators. zkl
Generators are built with fibers (co-operative threads) and fibers use the VM yield method to
yield a value, so if we replace the println lines (above) with vm.yield, we have written a
Generator. All that is left to do is to package it:
 g := Utils.Generator(findPrimes);
 println(g.next());
 → 2
Or, to repeat the “print the infinite list” example:
 foreach prime in (Utils.Generator(findPrimes)){ prime.println();}
 → 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 …

2 findPrimes was modified from the Wikipedia article on Generators

12 Appendix C: Illustrated zkl Code Examples

Appendix C: Illustrated zkl Code Examples

In this example, foreach asks the Generator to return a Walker, which it does, then foreach uses
that Walker to iterate.
To get the next twenty primes: g.walk(20)

The important thing to note about findPrimes is that finding the next prime number requires all
of the previously found primes. It is expensive to ask for primes[n], primes[n+1], etc, which
a Walker would typically do.

Code
class Generator{ // → Walker
 fcn init(f,args){
 var [const] fiber = vm.createFiber(start,vm.pasteArgs());
 returnClass(walker());
 }
 fcn walker{ (0).walker(*).tweak(next); }
 fcn [private] start(f,args){
 vm.yield(vm);
 f(vm.pasteArgs(1)); // f(args), only called once
 return(Void.Stop); // all done, stop walking
 }
 fcn [private] next{ fiber.resume() }
}

In this case, fibers are used as a continuation. A prime is computed, returned, the fiber stalls,
and the VM state is frozen. When another prime is requested, the VM is thawed, the fiber
resumes as if nothing had happened and calculates the next prime.

Let's walk through the code and see how fibers are used. First, “init” creates a fiber running the
“start” function with whatever parameters where passed in. The first thing the fiber does is to
yield the “continuation” (the VM running the fiber). The fiber is now stalled but is ready to start
calculating primes. A Walker is created and returned to put a nice wrapper on the Generator.
Nothing happens until somebody calls “next” (via walker.next()). When it is called, the fiber
resumes. Now start has to repackage the parameters. Init didn't know what parameters were
actually passed in, if any, so it just punts whatever it is given over the fence. Now we have to
deal with them. We know the function is the first item, and that the rest of the list needs to be
converted into parameters to the function:

● Generator(findPrimes) → start(findPrimes) → findPrimes()
● Generator(findPrimes,1,2,3) → start(findPrimes,1,2,3) →

findPrimes(1,2,3)
Now, program execution will stay in findPrimes, until findPrimes is done (which it never is).
Once you find all the primes you want, you can abandon the generator and let the garbage
collector “take care” of it. If findPrimes had a built in limit and exited once it reached that limit,
the Generator would return(Void.Stop)), which would signal the Walker that it is finished
and the foreach loop would end.

Appendix C: Illustrated zkl Code Examples 13

Appendix C: Illustrated zkl Code Examples

A much more efficient prime finder is this sieve, which also uses Generators. It is modification
of a Python program posed to StackOverflow3

fcn postponed_sieve(){ # postponed sieve, by Will Ness
 vm.yield(2); vm.yield(3); # original code David Eppstein,
 vm.yield(5); vm.yield(7);
 D:=Dictionary(); # ActiveState Recipe 2002
 ps:=Utils.Generator(postponed_sieve); # a separate Primes Supply
 p:=ps.pump(2,Void); # (3) a Prime to add to dict
 q:=p*p; # (9) when its sQuare is
 c:=9; # the next Candidate
 while(1){
 if (not D.holds(c)){ # not a multiple of previous primes
 if (c < q) vm.yield(c); # a prime, or
 else{ # (c==q): # the next prime's square:
 add(D,c + 2*p,2*p); # (9+6,6 : 15,21,27,33,...)
 p=ps.next(); # (5)
 q=p*p; # (25)
 }
 }else{ # 'c' is a composite:
 s:=D.pop(c); # step of increment
 add(D,c + s,s); # next multiple, same step
 }
 c+=2; # next odd candidate
 }
}
fcn add(D,x,s){ # make no multiple keys in Dict
 while(D.holds(x)){ x += s } # increment by the given step
 D[x]=s;
}
To generate the first 200,000 primes:
primes:=Utils.Generator(postponed_sieve);
N:=0d200_000;
primes.pump(N,Void,Console.println);
println("The first %,d primes.".fmt(N));

Sequence/List Comprehension

List comprehension is used in functional programming to express, in a concise manner,
building lists with nested loops. The resulting lists can be infinitely long. Consider this line of
Haskell:
 take 10 [2*x*y | x<-[0..],x^2>3, y<-[1,3..x],y^2<100-x^2]
 → [4,6,18,8,24,10,30,50,12,36]
which means take the first 10 items from the [infinite] list created by the stuff in []s, which is
an expression (2xy) and two loops with guards. The first loop has x going from zero to forever
where x squared is greater than three and the second has y as 1 to x counting by two as long as
y matches some calculation. Or
foreach x in ([0..]){
 if (x*x > 3){

3//http://stackoverflow.com/questions/2211990/how-to-implement-an-efficient-infinite-generat
or-of-prime-numbers-in-python/10733621#10733621

14 Appendix C: Illustrated zkl Code Examples

http://http://stackoverflow.com/questions/2211990/how-to-implement-an-efficient-infinite-generator-of-prime-numbers-in-python/10733621#10733621

Appendix C: Illustrated zkl Code Examples

 foreach y in ([1..x,2]){
 if (y*y < 100–x*x) yield(2*x*y);
 }
 }
}
So, how to write a function that does comprehension? How about some recursion:
Given: an action, parameters and a list of sequences and filters:
 If the list is empty, run action(parameters) and return the result
 else
 Get the first sequence/filter combo from the list
 If sequence is a function, call it to get the sequence
 Get an item (from the sequence) and add it to the parameters
 Run each filter with those parameters.
 If all the filters pass, recurse (with the reduced list)

The Haskell equivalent becomes:
gerber4(fcn(x,y){2*x*y},
 T([0..], fcn(x){x*x>3}),
 T(fcn(x){[1..x,2]}, fcn(x,y){y*y<100-x*x}))
 .walk(10) → L(4,6,18,8,24,10,30,50,12,36)
Not as pretty as Haskell but it works.

And here is the code:
 4: grind := fcn(action,[T]args,[T]sfs){
 5: if(not sfs){ // at the bottom, do action
 6: r:=action(args.xplode());
 7: vm.yield(r);
 8: return(); // back out of recursion
 9: }
sfs is the list (of lists) containing sequences and filters (with a mixin to indicate it is expected to
be a list).
Since the parameters are packaged in a list, they need to be unpackaged when calling action;
.xplode() does that. This is going to be packaged in a Generator (so infinite lists aren't a
problem), so we yield the result.

10: sf:=sfs[0]; // seq & filters, T(fCreateWalker,...)
11: sequence:=sf[0];
12: if (self.fcn.isType(sequence))
13: sequence=sequence(args.xplode());
14: else if(Walker.isType(sequence))
15: sequence.reset();
This bit of code is a bit funny. If sequence is a Walker, we need to reset it because we iterate
over it multiple times. (If it is a collection, such as “abc”, a [new] Walker will be created
automagically). If it is a function, that function encodes the sequence, eg fcn(x){[1..x,2]}.
The function is passed the parameters that are in play at that point.

4 Because it purées and strains data.

Appendix C: Illustrated zkl Code Examples 15

Appendix C: Illustrated zkl Code Examples

16: foreach arg in (sequence){ // create or reuse Walker
17: arglist:=args.append(arg);
18: r:=sf[1,*].runNFilter(False,0,arglist.xplode());
19: if (not r) self.fcn(action,arglist,sfs[1,*]);
20: }
21: };
And this is the meat. runNFilter runs each filter, and, if a filter returns False, runNFilter stops
and returns True (strangely enough). If all the filters return True, False if returned (ie no
failures) and we have a good set of values. Trim the list of sequences and filters and recurse.

And now, the finishing touch: add a wrapper to simplify the call and return a Generator (see the
previous example):
 3: fcn gerber(action,sequencesAndFilters){
<the grind function, see above>
22: return(Utils.Generator(
23: grind,action,T,T(vm.pasteArgs(1))));
24: }

The nice thing about this code is that it works not just for numbers but for any collection that
has a walker.5

5 Note: For the “do it now” case, there is a more concise solution using recursive pumps.

16 Appendix C: Illustrated zkl Code Examples

	Appendix C: Illustrated zkl Code Examples
	Hex Dump
	Factorial
	Processing Text Files with Scripts and Pipes
	Roman Numbers
	Device Drivers
	Generators
	Sequence/List Comprehension

